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INTL'HACTION OF STRESS WAVES IN P

NQNLVVAR VISCDELASTIC MEDIUM

PE'IER M. VOGKL

Nonlinear interaction of manochrcxaatic viscoelastic waves is

investigated by calculating the second order displacement field that

results when either two distinct waves interact with each other, or a

single wave interacts with itself. This is acccxnplished by studying two

types of interaction problems; volund interaction and the interaction of

plane waves.

Volume interaction is studied by having two viscoelastic waves

of arbitrary propagation direction and polarization interact. Next,

the problcrn is simplified to the elastic case and the radiated ncnlinear

wave that results fromm resonant interaction of the primary waves is cal-

culated for the following cases.

l! Interaction of two transverse waves for various

polarizations and propagation directions.

2! Interaction of boo longitudinal waves for various

propagation directions .

3! Interaction of a longitudinal and a transverse wave for

various polarizations and propagation directions.

'Ihc interact>on of colinearally propagating viscoelastic plane

waves is considered next. The second order wave resulting when two rmno-

chromatic pr~ waves interact, is calculated for the following cases.



1! Interaction of distinct transverse waves for various

polarl. zat1ons .

2! Interaction of distinct Longitudinal waves.

3! Interaction of a transverse and a longitudinal wave.

4! Self-interaction of a transverse wave.

5! Self-interaction of a longitudinal wave.

In addition, a thorough develcgrent of the nonlinear equations that govexn

the displacement field is presented as well as an explanation of the

ra chanisms through which the nonlinearities arise.

The conclusion contains a listing of all of the nonlinear waves

U>at result for 6x various interaction cases, as well as a description

of an experinmnt designed to abserve the nonlinear wave and measure the

parameters necessary to calculate the nonlinear elastic constants. Also,

sana preliminary experimental cbservations are reported.



GNPIl R I

INTRODUCrlCN

The entire theory of linear elastic  or vismelastic! wave propa-

gation is basml m Hoake's law and the linearized strain tensor. The

most characteristic property of these linear elastic waves is that any

wave can be obtained by simple superposition of separate rmnochranatic

waves. Each of these waves pr~agates independently of the others without

regard to its polarization. 'I%us one says that these waves c3o not interact.

ikwever, !cooke's Law and the linearized strain tensor are only apprm~

tions ami in certain instances do not apprcpriately describe the nature

of the medium. 'These instances are the cases of large amplitude waves

and an inherently nonlinear rredium. Consequently, nonlinear equations

must, be derived in order to model the characteristics of wave propagation

for these cases.

Because the equation of rrotion for the wave is nonlinear, sirrple

periodic solutions are no Longer achnissable and the nonlinear interacticn

of waves must be considered. The anharmanic solutions of the nonlinear

equation of mticm and the polarization analysis for the interaction of

large amplitude visooelastic waves propagating in a nonlinear rredium will

be ccnsidered in this thesis.

The anhaxmonic effects of wave propagation in solids are not

unLike those of other dynamic prablans and are very similar to those

ef fee~ in wave propagation problems of acoustics ~ electrodynamics.

In general the nonlinear mntr~tions are snmll when oavpared to the

linear effects except for the cases of large dynamic motions and para-

rretric resonance. Therefore, in this thesis, apophasis will be plasma on

these two ccnditians.



CHAP'lZR II

The anharmonic effects of wave prcpagatim in a continuum can be

predicted fran the field equations of continuum mechanics, sinew in

general all ccmstitutive relations are nonlinear. The first quantitative

detection of these anharmonic effects occurred in acoustics and was

published by A. L. Thuras et al �! in 1934. It, was noticed that frequency

doub1ing occurred when an intense sound wave propagated in the atmosphere.

Although analysis was presented, the nonlinear equations. of acrostics

were finally formulated by M. J. Lighthill �! and these equations were

used extensively to solve a variety of problems. A very selective list

of sorry of the work in nonlinear a<mustics is listed in references 3 to

15. Nonlinear interaction and the anharmonic effects of electrcxnagnetic

and plasma waves have also been investigated by R. Y. Chiao, E. Garmire,

and C. H. Tames �6!, A. Yildiz �7!  respectively! as well as others.

'Ihe anharmonic effects of elastic wave propagation has been

investigated both theoretically and experimentally. theoretical analysis

was initiated by Landau and Lifshitz �8!, who showed how the nonlinear

equation of ration could be derived and discussed the results of inter-

action of waves. Subsequently Z. A. Goldberg's work �9! in 1960 kindled

a new interest in the problan. In his paper, he showed that a second

order longitudinal wave was generated when a transverse or a longitudinal

primaxy wave propagated in an elastic media. Shortly thereafter, Jones

and Kcbett �0! investigated the interaction of two distinct waves of

eittmr polarization  longitudinal o» transverse! propagating in various

directions. This was aocxmplished by solving the inhanogenious vectox

equation of motion by using a tensor valued Green's function. The work



of Jones and Eobett remains the significant theoretical basis for much of

the subsequent work in the field although several deficiencies mar their

work. First, there is a term deleted in an important result. Second,

the Green's function is crbscure in origin. Third, the discussion of

quantum rrechanical results ccntradicts the results found by using classical

nechanics and this discrepancy is not resolved.

The work of Jones and Hobett was redone by Childress and Ilambrich

�1! in 1964. In this case the authors used the "wave packet" formalism.

The problem was also solved by using quantum rrr chanics exclusively by

Taylor and Bol~ �2! . While the volurre interaction work of Jones and

Kobett was being studied in the American school, the plane wave interaction

work of Goldberg was being extended in the Soviet school. Papers published

in the early 1960's by Gedroits and Kroselnokov �3!, Viktorov �4!,

Pospilov �5!, and Stepanov �6! were devoted to the sana problem Goldberg

studied. fiowever, it is felt that none of the above menticrned authors

shared tlat insight that Goldberg had of the problarr. Gedroits et al

performed laboratory experiments which were later published �7! . Viktorov

discussed the effects of boundaries an the interaction phenorrenon and he

also explained the phczxm~~on by investigating the nonlinear stress

tensor. Pospilov discussed the viscoelastic case; hcamver, he did not

solve the problem in general. Stepanov showed saba results that are

contrary to all previous work and the rrethod used to obtain them, makes

therrr unccnvincing. In addition to the above nentioned experimental work

by Gedroits et al, observation of nonlinear waves have been reported by

Kung-csin Jen, L. K. Zarcmbo and V. A. Krasi&ekov �8! and F. R. RQlins

et al �9! in laboratory experiments. Although both experiments were

well dane, the only conclusion to be drawn fran either is that observation

of nonlinear waves in solids is possible. Recently there was an attempt



by Y. N. Men �0! to investigate the interaction of viscoelastic waves;

however, he neglects various polarizations and types of wave interactions

adding little insight to the theory.

'Thus cne observes that the anh~nic effects of elastic waves

has been ccnsidered both fran a classical mechanics and quantum mechanics

points of view; however, at no timbre has the entire problem been forrmlated

in a unified manner. Furthermore dissipation of the waves has not been

adequately considered. I t is particularly important to inoorporate

attenuation into the model for two reasons.

l! dissipation is a physical part of all wave propagation

phen~a

2! the problem of resonant interaction of waves cannot

be mrpleted unless internal damping is introduced.

These two points will be further artplified in the subsequent sections of

this thesis.

The author in this thesis has attenuated a unified and general

formulation of the problen. A ccrrplete study of the problem will help

design experirrants to determine the nonlinear elastic constants that are

a vital part of the quantitative understanding of nonlinear wave propaga-

tive. Gxpletian of the experiment is beyond the scope of this work;

however, the design of an initial experirrent and scxne results are presented.



CHAPTL'R III

FORmZVrIOn OF TiiE Fromm'

d8 = TcK � dR

iiere f is the internal energy density and R is the work density. The

free energy density +is given by:

Qf= ~ - SQT �!

The thermodynamics that governs the deformation process of the wave

propagation must be deter»uned. Elastic,  not visooelastic! waves can

be characterized as adiabatic deformations. In this case, it is argued,

1! Thermcdynamic Aspects of Wave Fropagation.

In general, the equation of motion for elastic waves can he

derived by writing ~Vewtm's Second Law and the constitutive equation and

a brief explanation of the therrmQynamic process. However, this is not

the case when considering wave propagation in a nonlinear viscoelastic

medium. Derivation of the equation of ration must be accomplished by

using the most basic approach. In this section an equation of motion that

governs the prcpagation of elastic waves in a nonlinearly elastic, linearly

visas solid medium will be derived. 'Ib this end, the thermodynamics

of the deformation process will be considered and the appropriate con-

stitutive equation will be derived. The first law of ther»cdynamics

states that the difference between the heat aoquired by a unit valor'

of material and t'ne work done by the internal stresses in that vol~e

is equal to the change in internal energy. For a reversible process,

the heat change is given by T dS where T is the temperature and S is the

entropy. Thus the first law can be written as:



that ten~rature changes due to deformations cause only negligible quantities

of heat transfer due to the rapidity of these tertperature fluctuations and

tlic fact that the tcrrtperature gradients ~ as often in one direction as

ir> the o~r. In this case

d
� S= 0
dt

or for an elastic medium

S = constant

We therefore conclude that the thermodynamic proooss that. characterizes elastic

wave propagation is an adiabatic-isentropic process and the elastic cxmstants A

and e are assumed to be the adiabatic constants. The Larry pararrater, p, is

independent of the thermodynamic processes because it is only associated with

deformations that do not involve volurre changes. The deformation proo ss of

viscoelastic waves cannot be characterized as adiabatic because it must involve

mchanical energy dissipation and thus energy loss. rkwever, if the assurrption

is made that the rimchanical energy dissipation  which est result in the

increased internal energy of the medium! results for a reasonably short

periods of timbre, only a negligible temperature rise will result. IIence, visco-

elastic waves may b. characterized as approximately isothermal. In this case

tlirt constants A and v are referred to as tho isothermal mcxluli. It is because

there is no physical deformation that does not dissipate energy and because

viscoelastic waves will be a major part of the follcwing work, hereafter the

cctrstants A and K will be assumed to be the isothermal rreduli and the defor-

mation process of viscoelastic wave prcpagatior> will bo assumed to be an iso-

thermal one.

2! Lnergy Concepts in Wave Propagation

In order to provide a basis for the ncnlinear-viscoelastic



forntulation� the familiar linear elasticity will be investigated. The

force  I .! due to the internal elastic stre sses can l~;rritten as:1

k'

where ak. is the stress tensor. Then it can be sh~ that the work densitykx

can be written as:

----- s!
ikmn ik rm

where y~ is the cx>nstitwtive tensor of 1iooke's law and c~ is the linear
strain tensor. By substituting the expression for work as expressed in

 ~! into eq.  l!, it follows that for an adiabatic process:

  ik! ~ rm xk

Sinular3.y when working with nonlinear elasticity, the stress tensor will

be obtained by taking the partial derivative of energy with respect to

caqmnents of the strain tensor. Again this energy will be the total

ternal energy for an adiabatic process or the free energy for an iso-

themal process. 'Ihe crucial difference for nonlinear elasticity is that

the strain tensor new ccntains the second order term 3 U 3 U which was
me ne

previously neglected. So in nonlinear analysis ono assumes that the second

order terms are significant either because of large deformations or because

the deforraations take place in an inherently nonlinear material. To ccn-

stzuct a nonlinear mx'.el one first expands the internal  or free! energy

in second and third order powers of the strain tensor for which an invariant

 scalar! term can be fornvxl. For an isotropic material, the energy beccnes:

 OX +! =PE. + � E E + -E, C. EA

2 ee ee 3 & xc ke

+BE. E. E + � CC
ik &. ee 3 ee

The above expansion can be made by observing that the strain tensor is

symmetric and that each term rrUst be a scalar. Ikwever, the coefficients

were chosen so that the first two terms would yield fiooke's law when



8 <or+! = 0.
1lT1 <8!

where the fourth order tensor is as follms:

D~ =Y~+~3 ~k 6 6 +9< 6
ke im em ie im km

+ � c 6. 6
C

3 ee ik mn  9a!

and where y~ is the cxmstitutive tensor of I ocike's law:

y. =A�. 6 ! +g �. 6 +6. 6 ! ----- � �  9b!
1kBlt E & mn in km m kn

Because the argun~t of second order smallness is no longer valid, one

must can..ider all the terms in the strain tensor.

'k 1/2  B.Uk k ' ' ~kU!xk ik ki i e k e �0!

Substituticm of this strain tensor into tiie expression for the energy

density yields:

8 or%! = U/4 �kU, + 3.Vk! +   «/2!  d U !2 2

<>+ V4! <>kV > U ~kU ! +  ~/2 B/2!  > U ! 2
ki ie ke ee ki

~kVi ~Pk Bi U + B/2 Bk Ui 3i Uk 3 U

+c/3 �U!
3

where terms up to and including third order teem in displaccxnant are

rct.aiJied and all higii order terms are neglected.

Tlie form that the stress tensor takes when nonlinear effects are

coiisidered can nm be derived. For isothcrmil QeforrtIaticns:

�2!

consider<< alone and the last three terms wcmld be identical to the results

obtain& by i~furnaqhan �1! . 'aliis expansion was first ccnsidered by

Iarnaghan  who did not use tensor notation! in 1936 arid the use of tiie

alive is sonetirxs referred to as Murnaqhan's five constant isotrcpic

elasticity.

'I'he internal  or free! energy can be cast into the form:



In order to take ti>e variaticm of the fan energy, it is only necessary to

note that it is a function of the displa~t gradient,  ~kU. > . 'Ihen:
k x

6  F! = 3 a U ! 'F! 6  akU' = k ~ a V !  F! 6V.] - 6U, ok[a  >  F! !
  l3!

Substituting Eq.  l3! into Eq. �2! and into the definition of work

density:

 l4!

and noting that F. = 3ka~, and by equating the coefficients of 6U., onek Ju.' 3.

concludes that for an infinite medium:

= ' a U.>'F'
k i

bk>re explicitly the stress tensor is found to be:

 l4a!

a~ = P BkU. + B.Uk> + Z a V 6.
kz zk e e

+  q+A/4! [BkV a.U + 2 8 U akU,]

+  X/2 + a/2! [� U ! ' 6 , + 2 a U 8 U,]
mn ki ee ki

+ a'l2[ a,U�!  aiU ! +  akU, aiU > + a U a Ui!

+ a/2[v a U a U. + a U a V 6.�! + C[V U !' 6.
ee ki mn nm ik e e

~animation of sum af the terrra will shm that unlike the linear stress

tensor, this stress tensor is unsyranetric. In the above, only the reversible

energy density or the purely elastic energy density has been considered. A

perfectly reversible process rarely exists in the physical world and it never

exists for a stress wave. Therefore dissipation of the wave must be con-

sidered.

'the thernaQynamic process, characterizing the propagation of a

viscoelastic wave, has been cxesidered in a previcvs section and found to

be an isothexxnal process.
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f = -3  g!
a q

Because < is a function of q, onc writesa'

�6!6 rlr= 3  g! 6q =- f 6q
q a

a a a

or for a ccmtinuum:

~v = f. 6U.dv
l.

�7!

where g is the dissipative function density.

Because the forces due to dissipation are zero during single trans-

laticnal or rotational rmtion of the deforrr~d body, the dissipation function

den. ity must be zero when either U. = constant, or when U. = r .. r.k
1 i ijk jK

In this case, the finite velocity, internal motion of the deformation

process causes dissipation of the energy because of the internal friction

 or viscosity! of the rredium.

Here, the dissipation of energy will be incorporated into the analysis

by rxrnstructing a dissipative function fran which the n<m-conservative forces

and the dissipative stress tensor can be derived. We introduction of

attenuation into the model will be abolished following the'methcUs develcpea

by Landau and Lifshitz  Ref. 18, Art. 34! .

If one has a rrechanical system whose motion involves the dissipa-

tion of energy, this motion can be described by the ordinary equations of

ration, with the forces acting on the system augmented by the dissipative

forces or frictional forces, which are linear functions of velocity. These

forces can be written as the velocity derivatives of a certain quadratic

function g of the velocities, and this function is called the dissipative

function. The frictional force, f, ~rrespcnding to a generalized coordinate,a'

, of thr systcwr i" thon given by:



The first of these conditions requires that the dissipative function

density rmst not be a function of the particle velocity but rather a

function of its gradient. The second condition requires that the dissipa-

tive function 4 be only a function of the symmetric parts of the velocity

graLL'.ent. That is:

4 = 4  < k! �8!

where c.k is tt~c rate of strain tensor.
zk

�9!

If the dissipative function is constructed in such a way that the dissipa-

tive stress that is derived fran it has a traceless term,  which has as

its coefficient r1!, the function will take the form;

~ 1 ~ 2 1 ~ 24= n  ~. -36. c ! + � C c ! � � - - � � �0!
ik 3 ik ee 2 ee

This can be written in the more oonvenient form:

0= n  ik! +  t:/2- O/3!   ! �0a!

The dissipative stress tensor  a'k.! can be found in a way analogous to
ki

I
that of finding the linear stress tensor. Ne ~ that:

�l!fi = a�

and that:

- 6 ! y dv = - J f. 6v.dv = f 8 a . 6U.dv
i i kki i

�2!

Hoover,

6�> 3'ik�! 6  ' k! a'ik e! =2�16Uk ' Bk6"i! �3!

20 '=3  ~! =-  ~-Yq! E 6.+2qc ----- �5!
ki c. Y ee ik ik

Substitution of the rate of strain tensor into L'q. �5! will yield:

2
a'. =  < � � q! � U �, + q B.U + 3 U ! � � � � � �6!

ki 3 e e ik i k k i

The rate of strain tensor is symmetric and therefore:

ik g! 3k 6U = 3k B"ik e!! '" Bk�'ik�! 6" ! �4!

Cmhination of Eqs. �2! and �4! will yieLd the following for an infinite

media .
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It is no coincidence that the dissipative stress tensor resembles the

elastic stress tensor for an isotropic media. 'Ilute dissipative function

can be put in the form:

1 ~ ~

2 nikmn �7!

where q~ is similar to the fourth order tensor of llooke's law and is

called the viscosity tensor. For an isotrcpic medium this tensor can be

reduced to

2

Po/2 U. U. �9!

for a solid of density p .
0

3! Equation of ration for waves in a nonlinear viscoelastic

mxlium

The equation of mo'tion can now be derived by using Hamilton's

principle:

6 I = 6 f' f ~ dx dt = o
V

�0!

where points 1 aml 2 are points in tirre where the variation of the dis-

pla<~t is zero, and V is a volund that is enclosed by a surface on

~Rich the variation of the displa~t is zero. I or this prcblcm the

lagrangian density takes the form:

�1!

Unlike the elastic stress tensor, the visccms stress tensor contains no

nonlinear terms with respect to the displaaezmnt. In formulating this

stress tensor it was assumed that the dissipative forces were exclusively

a function of the linear velocity. Thus viscosity is only a first order

phen~cn. The only energy left to consider before the equation of motion

can be derived is the Kinetic Wergy density, which is simply given by:



l3

Where V is the potential energy density and is equal to the sum of the

reversible and irreversible parts,

+rev 'k +ZBR i k! �2!

'ihe reversible part is the free energy as expressed in Eq.  ll! and the

irreversible part g takes into acarunt the effect due to dissipaticn.

Substitution of the Lagrangian density into liamilton's principle results

f f [6$U ! ! -6 p  B U.!!]dx. dt � f f 6 p dx dt = o � � � � �3!
V

1 k i K
V

IRR r.

The conservative part of the abave equation can be integrated in the usual

way;

f' J � p  U.!!-6  p BkU,>!]dx�dt =
V

~ U ! Q<Ui!�U' 3� U ! + ��kU.!]dxkdt � � - � �3a! Ui! k i
k z

where each part is integrated by parts.

f f a<�> p �Ui dx�dt = f a U' ! Y>«i I'dx�-f' »t~ U !  Y>6Ui dtdx�
v 1 v i

2 2

f a<~ �> p� akUi! dx�dt = f a a U !'v k i k x !  RkUi! S

2

f f a�a �>  P >6U,~dt �4>

The first terms in the above expressions are zero sinze 6U. does not vary
i

at the end points. Next the irreversible part of the potential energy

trust be integrated. One notes that variation of potential enerqy is tne

vari.at1on of work p
2 2

f f 6V ~dt = f f ri 6Uidx�dtI RR 1 j.
�5>

Vki 6Ui kdt

'Hm force in this case has been shown to be the gradient of the dissipative

stress tensor, and therefore the integral on the right becomes:





including higher order terms in the energy expansion. A highly nonlinear

material would have large numerical values for the constants A, B, and C,

and a very linear material would have A = B = C = 0. By the way the

values A, B, and C are in general negative  B is positive for metals!

and they are approximately an order of magnitude smaller than the iso-

thermal first order moduli for polymers and of the order or one order

larger in value for rtetals and several orders larger than the linear

moduii for smm crystals. This will be discussed in more detail later.

2! The second type of anharmonic effect is one that arises from

large deformations. The model takes this into account by including higher

order terms in the energy expansion and by not discarding the second

order term in the strain tensor. The relative importance of these two

effects will vary cxmsiderably with the type of material, and the effect

of nonlinearities in general will be very much de~lent m the amplitude

of the wave. A numerical example will illustrate this point. The maxim'

stresses due to a one dixransional longitudinal elastic wave propagating

in a nedium of polystyrene will be calculated. Polystyrene was chosen for

two reasons. It is easy to excite a large amplitude wave in this material

because of its low density and secondly the seccnd order elastic cvmstants

have been carputed for this material �2! .

2.89 x 10
10

1.38 x 10
10

-1.00 x 10
11

-8.3 x 10
10

C = -1.06 x 10
ll

1.05 gm/ctn
3

dyn/cm
2
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ice maxim' stress due to the varies deformations of a 10K cycle/sec

-9
longitudinal wave with amplitude of 5xl0 an propagating in the above

material are as follows:

Linear stress = 7.15 dyne/cm2

-7 2
Nonlinear stress with  M~O! = 1.4 x 10 dyne/an

Nonlinear stress due to terms whose ccefficient is

-5 2
A, 9, or C = 4.24 x 10 dyne/cm

These stresses were calculated by using Eq. �5! . If a wave of the sane

-4
fr~~uericy but with anplitude of 5x10 an were propagating in the sara

material, the stresses would be 7.l5xl0 dyne/cm, 1.4xl0 dyne/an, and4 2 3 2

5 2
4. 24xlQ dyne/an res pectively.

It, can be seen fran this that by increasing the magnitude of the

wave by an order of 5, the nature of the stresses is canpletely changed.

If the nonlinear stresses were not significant in the first example, t1.ey

are very hach significant in the second ~le where the oscillations

are well into the nonlinear regicm. It is interesting to note that

polystyrene is not by any rreans a particularly nonlinear material  scxe

m.t~ls un' crystals are several orders of magnitude rare nonlinear! and

-4
even in the laboratory a wave with an anplitude of 5 x 10 an can be

generated by using quartz crystals excited by sufficiently high voltages.

In addition to high anplitude waves, tJmre is one other instance when

nonlinear oscillat.ions beocee predcxninant, and that is the case of

resonance, which will be discussed later. The effect of the nonlinear

Qeforn~tian, whether it is due to large defornations or a predmunantly

nonlinear material, will be the sarre and that is the creation of a second

order wave that is not the result of suIx:rposition.

4! Thc Perturbation Technique

. thThe only variable in the equation of motion, L'q. �7!, is the i-

ccrnponent of the displacement vector and it appears as a linear term on
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div  U ! curl  U! =0

div  U ! = 0 curl  U !

The waves represented by the solution of the linear equation propagate

independent of each other, and because the interaction or self interaction

of these waves will be investigated; henceforth, these linear waves will

be referred to as the primary waves. The N = 2 order equation is the

lowest that results in an inhanogeneous equaticm, the source term consist-

ing of second order cxmbinations of the primary waves. It is for this

reason that we say the N = 2 order is the lowest that results in an

interaction. Because

one can conclude that for all practical purposes, the displacxment field

this given by a finite sum of the N � order displacenents. In fact, only

the second order displacements  and of course the primary waves! have

been observed in the crude laboratory experiments ccrrpleted thus far.

calculation of the N=2 order displacenent is irportant because doing so

gives insight into the physics of wave interaction.

The equation of motion was derived in such a way that the dis-

placmmnt terms of hitcher order than 2 were disregarded. If the free
I

energy density were expanded further in powers of the strain tensor, and

if the appropriate higher order terms were retained in the equation of

motion, perturbation of the variable would have allows! calculation of

displa~ts higher titan second order. As mentioned before these higher

order displace.nts becca increasingly smaller in magnitude and importance.

For instance the N = 3 order wave will Le due to either interactice of a

primary wave with a second order wave or third order primary wave

In addition to finding the nonlinear ccntribution to the displacenent field,
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interaction. The N = 4 wave will be due to either interaction of Wa

second order waves, a third order wave and a primary wave, or fourth

order primary wave interaction. The types of interaction are easily seen

by investigating the source term S.. 'Ibis thesis is conoerned with N!

only the seccmd order interaction and accordingly only second order terms

are included in the source term. '1hese terms are of the form:

 N-j!  j!

J

Substitution of N = 1 into the above surrrnation will yield zero, h~er

substitution of N = 2 will yield a canbination of two primary waves as

the source term. llence we are considering primary wave interactions.

X.f terms of the third order were considered, the source term

would be of the form:

 N-K- J!  K!   J!

K J

and if the fourth order terms were considered, the form of the source

term would be:

N-1 N-L-l N-K-L-1  N-K-L- J! L Q J
i: A D   D

L K J

Xn this manner any order of nonlinearity can be considercx3, hcarever,

consideration of the,anent of algebra necessary to carplete the analysis

make such calculations impractical. Also there is little mqx=rirrental

evidence of the existence of interaction waves of higher order.



GSPrKR IV

VULUML INl'EMCTICNS OF ELASTIC WAVES

l! The Primary Wave.

As rrentioned previously, the Primary Waves will be represented by

the real part of the solution of the linear equation  N = 1!:

'I'he next step is to Fourier tirre transform this equation; hawever, before

8oirvg so, the Fmricr transformation pairs for hot!> time and space trans-

forrration will be listed. The transformation pairs are:

f r! - 2 J f r.t! ~ lent!dt { 2a!

f r,t! = f f r! exp -izt� {2b!

f {y! = f f  r! exI!{iy r!dV
v

�c!

f r! = 1/�m! ~ f f y! exp{-iy r!d'y � � - - �d!
Y

 l!, after Fouricr transformatio~ and rearrang~t, can be written

in vector notaticn as:

First the interaction of stress waves in three dimensional space

will be modelod. A three dirrensional rrodel is especially useful when

two pr~ waves cross each other. The volurr~ of interaction is then

approximately spherical and this volurra behaves as a spherical radiator

of interaction waves. In the case of self interaction it is assumed that

a wave crosses a spherical ncmlinear elerrent and the self interaction

occurs. The spherical nonlinear elomcnt then serves as a radiator of

interaction waves.
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p ~~ U  r! -   li � inn! VxVxU  r!
-�! -�!

0
'+

+   A+ 2 p! � iw q + q/3!! V V U ! =- 0. -�!

I3y letting the displacxmcnt vector be represented by the sum of a longi-

tudinal displacement U  r! and a transverse displacement U< r!, anD by
noting the parties of these displa~ts as list~< in the last sec-

tion, the equation can be separated into Nro vector He~oltz equations:

 VV+K ~ k! U r! =0
L

 V %+K K! U, r! =0

where the n~itude of the propagation vectors  K! can be separated into

real and imaginary parts:

I = IKL'I + ilqj �!

- - - - �!

1/2
�+v A ! +j.

2�+<a A !

�+~ 8 ! +1
 9!

2�~ B !

� + Az z! 1/2 1 1/2
4! 2� + Az ~! �0!

�+Be !

�2!

�3!

< + I1/3
�4!

�5!
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{1! ~ +
U.  r,t! = h. exp -K" r! cos <~ t-K' ' r!

i ' i ! '  ! {"!

+ A., exp -K" ' r!  ccs ~ t-K' ' r! � � � - � - �6!
i  B!  B! B {B!

'l'ne primary displacement field is written in this manner because we are

interested in the interaction of two distinct waves. In the above

equation A.  , A.   are the polarization vectors and the subscriptsi  !' i B!

~ and B are intended to only identify the waves and they are in no way

relet to the A and B of Eqs. �4! and �5! .

Substitution of the primary wave into the source term given by

�2! of Section III, results in the following expression if the self

teraction terms are disregarded.

S.  r,t! = Z [ V.   B sin[ z +z ! t � {K�' + K'! ' r!
cc+ B

�! -+ +, +
+ N, cos [ u! +g !t; K' + K'! r]! exp[- K"+K"! rj - � - �7!

i  +B! B ~ B

Khere the vector nature of the source term is given by:

V. = � 2 9+ 5/4! [ �Yi � + 2 . + �Y � 6Y ! + 2 {9Y � 10Yi{2!

-' 18Y"

  "+ B! [�jYi 22 i +   C! [33 34

25Yi 26 i 29 i 30 i �8a!

2 " 3i 4"i 7i 8 i 11"i 12 i
�! 1

15 i 16 i 19 i 20 i

+   X+ B! [  2 +  B + 2C! [35Y 36y.]

27Yi 28 i 31 i 32Yi {18b!

The pr~ waves can be represented as the inverse time transform of the

real part of the s-lution to the linear equation, or for this problem,

the primary displaaaaent field will be the sum of two waves:
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and the y. vectors are as follcavs:
1

 A ' A ! K' ' K'! K'.  ! -  A,' A ! K" ' K"! K

- 2  A A !  K" ' K'! K".  ~!

 A A !  K' ' IC'! K' �  A A !  K" K"! K.'.Yi

2  A A !  K" K'! K"

 A A !  K" K"! K" .�  A A !  K' K'! K.3yi =

+  A A ! K"' K"! K"  A A! K ' K ! K".

-+
 Z . K'!  IC ~ K'! A. -  A K'!  K" K" ! A.Y.

+ 2  A ' K!  IC" ' K'! A.

gy, =  A Kg! h ! A.  -  A ' K ! h,"" "! A. g!

+ 2  P ' K"!  K" K~! A   !

 A Y"!  K" K"! A �  A ' K" !  K' ' K'! A

 I;". K'!�y. =- .'  A K',!  K" K'! A., + 2  A I '!

h'!  K' '
<x g  I~! �  KII' K'!  K"' A ! A. ~'f ~ =  ICg~ A'! A.

K"!  K' ' A ! A.  K~' K"!  K" ' A ! A. K" .

 x! cx g a
 K" ~ K'!  Y," K.' K>!  K�' A! r i A,,! A.

ii 'i  !1G'i

� [ h  K"!  K~ A A,  ~! + h',. h" K~' A A.  ~!

y. =  K" K"!  K" A ! A. �  K' ' K"!  K' ' A ! A.

�y. = 2 f A . A! K" ~ K'! K, +  A - A ! K'," K'! h'. ]



y. =  K" ' K'!  K' ~ A ! A, /  K' K'!  K" A !

 A '

4y, =  A A ! K'' K'! K' --  A ' A ! K"' K'! K",

.y. =  K" Z"! K". �  K'' K"! K.' +  K" K"! K".

+ ~ + -+
~7yi =  K~' Ag!  K' ' K~! A   ! �  Ag' Kg!  Ks' K'! A.   !

>Sy. �  K�'' A !  K' K~! A.  ~! -  A ' K"!  K" K~! A.  ~!

 A ' K"!  Ktl ~

y. =  A ' K'!  K" K'! A, +  X ' K"!  K' ' K'! A.

l6yi

 K~' K'!  K~' A ! A.  ~! +  K' K'}  K"' A ! A,

A~!  K' K'! K' 8 -  A ' A !  K"' K'! K",

 A A ! K"' K"! K' �  A ' A ! K' K"! K"
i ~! ~ 8 ~ 0 i ~!

-  K' ~ K"! K.' ] A ~ A !

 A ~ K"!  K' K"! A. +  A K'!  K" K"! A,

 A ' K"!  K'' K"! A. +  A K !  K" K"! A,

+
K~! A.  ~! �  A ' K'!  K' ' K~! A.  ~!

+ ++  A ' K  !! K'' KN! A  ! -  A ' K'! K'' K'! A  !

+  A ' K'!  K"' K'! A. +  A ' K" !  K' ' K'! A.
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-+ + + K~' Kg!  A ' K'! A.   ! �  K" ' F"!  A ' K'! A.

� 2 K" ' K'!  A, K"! A.

Y

� 2  K" ' K'!  A K"! A.

+  K~ K"!  A ' K"! A. -  K' K'!  A ' K"! A.

+ +
24Yj = 2  K" ' K'$ A ~ K'I A,   ! + 2  Kg K~!  A K'  ! ! A.   !

2 Y  A K ! A ' K'! K' .-  A ' K"! A ' K"! K.'

�  K' ~ 1"!  A K" ! K". �  A K"!  Z K'! K".

26Y =  A ' K'!  A K'! K' �  A 1 "!  A K"! K.'

+ + + ~ + + Kg' Kg!  A ' K~! K".   ! �  A ' K' ~! !  A K'! K" .  !

+ -+
7Y,= AK" ! A'K" !K'.�  A K'! A K'!K

+  A . K"!  X K"! K" �  ~ 1,'!  W ~ K'! K"
a a j  a! g g a u- j a:!

28Y. =  A ' K'! A K"! K,' +  A K"! A K'! K.

+ + ~ + +
29 AC K'!  A ' Ko! K~! 8! �  A~' K'!   ',", K ~!

 A K"!  A ' K"! K. +  A ' K"!  A ik'! K".



+  A K"!  A ' Ki"! V" .�  A K"!  A ' K'! K!
8 ~ 5 i 8! 8 " ~ l3 i�!

3QY  A Kg!  A~ K" ! K, +  A K' !  A K'! K"
z ~!

+  A ' K'!  A K"! K' +  A ' K'!  A ' K'! K".

-+
33y. =  A~ K~!  A '   8!  Ag KII!  AK'! K'. K ! K ~  8!

 A K'!  A ' K"! K" +  A ' K"!  A ' K"! K!

+ + + + + + +3gy,= A~KB! A'K'!K' ~! �  AH K~! A'K'!K"  ~!

+  A . K"!  A ' K"! K" .-  A ' K.',!  A K"! K'.

 A K'!  A ' K'! K" .+  A ' K !  A Y'! K.!

+  A ' K'!  A ' K'! K" .+  h l',",!  A ' K'! K'
i 8! r~ 'I, - i B!

2! 'I'he Second Order Wave

The second order displaaenent field can be calculated by usin

the appropriate Gre~~'s function. 'Ihe equation to be solved can be courier

txansforrred and rearranged as follows.

j� +I',! 6. - �-Y~l  ! 3. 3 ] j<  r! = � S.  r! � � � �  l9!2 ~ Z -�! ~ 1 �!
k T ik V'r,

o C,
0

Snore K �K and C< have both real and Uragina~ parts. If a tensor valued

 'reen's function is defined in such a way that it satisfies the following

equation:
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then the displacanont field will be given by:

U<  r! = ! Gik r;r';~! S.  r'!dr'�! +
1

v
�1!

Tne tensor valued Green's function is derived in the appendix and is:

exp {iK'lr:r'~!
ik K' /r-r'/

l
G {r;r i~! +

4<o C',
exp  -K" ~ r-r' ~ !

a. a~ exp ix' fr-r' I!

4~v G' K' Ir-r'I
exp   K" lr r I! {22!

The use of the Green's function as expressed above would be pr~bitively

difficult because of the amount of algebra necessary to cmplete the

prablan; however, the far field appro~nation of this Green's function is

relatively easy to use. This Green's functian is then valid for the

radiation zone and thus for the remainder of this section, we will be

investigating the radiated waves due to interaction.

The far field Green's function is.

G. {r;r'; !! = �. - f',I !exp[iK,', r-I r'!]exp[-K"  r-f"r'!]ik ' ' 4 z ik i k
4mp C r

0

l+  z . 8 ! exp [iK '  r-f" r ' ! ] exp [-K"  r-r . r ' ! ] � � � � �3!
4~o C'r i k

After substitution of the Fourier transfoxmed source term into Eq. {2l!,

and performing the operations indicated by the Green's function of Eq.

�3! and inverse tom transformation of Vie result, the solution to the

inhanogeneous equation can be found to be:

[� k + g! b~ � {1 � K ~�.3k]Gk.  r;r'; >! = � b,k5 r-r'! � � �0!
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! r" -[ K' + K' ! + x  K" K"!]

The second order displa~t can be thcught of as t!ie real part of. the

above expression. Although Eq. �4! does not explicitly express the

seccnd order aisplacement, investigation of this expression will show

several of the interesting characteristics of the displaaerrent. First

the functional dependent of the displacement of the wave is of the form:

  +8! cosh  ~+g!

This is a radiated wave of frequency  u> +~ ! propafjating with the speed

UJ +U!~
Ci,Ki � � ~ anB attenuating at the rate of K" .. The first and

 ~'8!

Baird term in Eq. �4! are transverse waves and the seccnd and fourth

terr<@ ire longitudinal waves. Also notice that ior a given interaction

::+de, tJie fir"t t~ terms will increase  or de<~case! the spectrum and

t'ai» .l,i;;t t>io terin- will decrease  or increase! thf spectrum respectively.

In general, all of the terms will have significant re ults for both nozr.al

mode interactions  ~ >z ! an>1 flipped mode interactions  v ~ ! . The
8

polarization of the second order wave is detemiined by the projection

operators. The.,e vectors do not have unit magnitude and therefore will

contribute to the amplitude of the wave for a given niode. Tlie aiitplitude

of the wave is also very mucIi dependent or> tax vnlut s of the 'ntegra ion.

For instance consider the follcwing.
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This integration is thc most physical part of the calculation and it

is also the most difficult. 'Lhe vohma V' is the interaction volume

of the prirruzy waves, hence, this section is appropriately narra' "Volurre

intc raction of Visccelastic Waves". Because it is extremely difficult

to in&~rate this term, the entire problem is avoided by considering

resonant interaction of the waves. For resonance, we have

IMI = IN! =0

for scare specific case and the entire integral egression reduces to

V'. PJ.though the analysis is sirrplified in cases of resonance, the

solution is still not very physical because one is left with the problem

of specifying the interaction vol~ V'. It is because the Green's

function was forrmlated in spherical gecrnetry that we say V' must be a

sphere but the question remains as to the size of that sphere.

3! Resonant Interaction of Elastic Waves

The unphysicalness of this problem and the @ncunt of algebra

involved precludes the solution of volte interaction of viscoelastic

waves at this tirade; hcwcver, the volurre interaction of purely elastic

waves will be carried to its conclusion. &is will give an indication

of tIm type of analysis that needs to be dcne and the results that can

be expected.

The above rationed equations can t~ simplified to the elastic

case by letLing K" = 0. In this case the solution to the i'>mcqen~~us

ec~ati<n beccxras the displa~t because no imaginary terms remain.

This second order <lisplacermit takes the foll<wing form:
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S. r.! r" u! +u!
�!
i  ~+8! i k . ~ l3 +

s~[  ~  K � K ! ! r + bJ - -' !  t-r/C !j d r
8~pC r V

U  r t!
�!

k

whc re:

2 a+A/4![ A A! K K !K,  A A! K I ! K

+  A ' K !  K ' K ! A, +  A . K !  K ' K ! A,

+ 2  A K !  K ' K ! A. + 2  A ~ K !  K K ! A. ]

  4 t g + A/4 + B! [ A ' A !  K ~ 1 ,! K. +  A ' A !  K ~ K ! K .

+  A.K! K K! A.  A ~ K! K K! A, ]

~ A/4+0![ A' K! R K! K. +  A ' K! A 'K! K.

+  A 'K! A 'K! K. +  A ' K! A K! K. ]

 U+ 2C! [ A K ! A 1 ~! I:,  !  A ' P ! A3 P8! Ki  !]
6

2
 >+ 1S! [ K ~ K ! A ~ K !

p~ g a. cc

As mentioned before, if r is such that the ccefficient of r' is zero,

the volum integration of Eq. �5a! would reduce to the volund of inter-

action multiplied by a haxmcnic term. If r = r meets t1us condition
s

and the wave generated is <lue to resonant interaction of the primary

waves. I]ere the conditions for resonance will Im investigated and the

radiatcu wave for three types of interacticm will be studied. 1'Iie t?uee

types of interaction to be studied are:

�! � S �!
+ J sin [  C t �  K +KB! ! 'r'+ v +a<!  t-r/C�<! ]d r

8n p C r V0 'i'



l. interaction of two distinct transverse waves  T � T!

2. interaction of two distinct longitudinal waves  L - L!

3. interaction of a 1cngitudinal and a transverse wave  L � 'I'! .

For distinct waves the resonance conditions for the two expres-

sions in the displa~t equation are.

UJ � Q3
�  K+2! =0 ~+ J3! IXNGITUDINAL

+4!~
 K+K! =0 ~'0! TRANSVERSE

By squaring the a!xrve conditions and by denoting the angle between K

and K> as i!, one can stain the constraints on g  or cosy! for resonance

S. vector expressed
�!

ing characterizes this relationship: K ~ A = 0,

K ~ A,- = 0 and A A, = 0. When one examines theEX.

in Eq. �5b! one observes that it is equal to zero, and we therefore

conclude that no interaction takes place. For colinearly propagating,

non-orthcgonally polarized transverse waves, the following characterizes

the relationship: K ' A = 0, h~ A> = 0, Y. A = 0, K< A = 0 then the

source vector beccrms

to occur. Because, � 1>cosg>3, limits can be established for the fre-

quencies of the primary waves. The frequency limits, cos, and direction

of radiation cause d by resonance are tabulated for  T � T!,  L � L! and

 L � T! interaction in Tables 1, 2, and 3.

The individual types of interaction will next be ccnsidered

a! Transverse-Transverse Interaction

Zn thi case, the primary waves will be two distinct transverse waves

with frequencies that satisfy the resonance conditions. First we will

consider colinearly pr~gating, orthogonally polarized waves. The fol.im-
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TABLE 1:  T- T! interaction

frczIUency limitwave

>  � � l!  � + � ! +� a+8! L

a S a B!L <   � + � ! < 2 p�~CL!   � +
C

P.

gKMK

 < +u!B!

td K +43BK
 a a'B! T

TK3IZ 2:  L-L! interaction

v K +uBKB
 a-'0! L

K MBKB a+5! T 2

�! +Q !
a 0

 d K ~BKB
�   � + � '!  l~/C !+� u � P.! T 2

l 2
 td +43

a

TABLE 3:  L-T! interacticn

CT'CTCL MB CTCLWT
-2 '« � 2 � ~ ! +� a+B! I

  B!T 2 TL L 2 LT L 1  L- r! a

%+4
2 +!<-2

4! a 0

CT+C  8 4! B
-2 '<   � + � !

C ~ 0 a

6! UJ
2 <   � + � !

4!B 4!
L T

a

2 ZQ3 4!B CL C

2  � + � !  � -1! +-
8 a

S
/

 g K + d K
au 06

 ld +DJ !
2

a

2 v'+a'!
B

aaC BB

[~+ ~ ! ]

CT
~ K +~BK



S. �, = - l/2  ~+ V4!  A�A ! [iK I K, '- IK�I Ki 8!!

1/2  A+ p+h/4+9! A ' A! K K ![K. + K. ] --- �1!
8 ~ 8 i 8! i ~!

By examining the table, we can see that there is no frequency limit for

the transverse wave, and that the direction of radiation is colinear with

ti~e propagation vectors. Now let us investigate the projection vector

s  ! �  s  !
k  '-8! i  -'8! i k

Decause r. and rk are aznponents of unit vectors, the above expression
l

waves is characterized by: K ' A = 0, A A = 0, K A = 0. Then:cc a ' a 8 ' 8 8

��!
"'i - 8! =

+2 A '

+ ~4![ [ A ~ K ! [K I Ai �
K! K K! A. + 2 A 'K! K K!

2K I A  8! ]
!

i !

- -  X+ P++'4+B![ A K ! K ' K ! A. + A 'K ! K 'K8! A,  !]

- ~ PJ4+ B![ g K! A K ! K, +  P ~ K ! A ' K ! K. !

�8!

For noncolinear propagation, the transverse waves cannot excite a second

order transverse wave and for a material where C > C, the  ~+8! second

order lcngitudinal wave cannot, exist. Therefore the displacetrent due to

resonant interaction in this case is the follcwing longitudinal wave.

is zero. Because of this we conclude that a transverse wave does not

radiate due to resonant interaction of oolinearly propagating transverse

waves. %his result is not physical and will bc considered again. he can

also canclude that a longitudinal wave will not xadiate when the inter-

action takes place in a medium where C > C, because there is no frequency

ratio that will satisfy the resonance condition.

Noncolinear, orthogonal ly polarized transverse-transverse

interaction is next investigated. 'Ihe relationship be~ the primary
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 ~ �!
U  r,t! � sin[ <a � ui !  t � r/C ! ] � � � � �9!

8z p C r
o L

If the primary waves had the sane frequency, then there wcmld be no

second order displaoarrent. For nonorthogonal polarizations, the above

expression is valid, that is, the  ~-g! longitudinal wave will be

radiated; hcamver, the S expression will be a expressed in Eq.

�9! withK A = 0, K ~ A =0.

b! longitudinal-Longitudinal interaction.

I'irst the colinear propagation of primary waves will be cvmsidered.

In this case, the Sk ,~! vector remains the sare as expressed in Eq.�!

�9!, with the exception of seve of the vector products being easily

written as scalars. Note that this vector is colinear with the propaga-

tion  and polarization! vectors of the primary waves. By examination

of Table 2, one observes that a longitudinal wave will radiate for any

frequency ratio, and that the direction of resonance is colinear with the

direction of propagation. The displacerrent is:

 s '!
U,  r,t! � sin[ v + e !  t � r/C !] � � � � �0!

0 I,

I'or a media where C > C, there is no possible fr~tuency ratio for

resonance of the  ~-5. ! transverse wave and the frequency ratio for the

 ~+8! transverse wave is -1. This is not. physical so we conclude that

no transverse wave can be generated by colinear 1cmgitudinal-longitudinal

wave interaction. For oblique interaction of the primary waves, one

observes that there is no longitudinal wave radiated due to resonant

interaction; haver, if the frequency limits of the  M8! transverse

wave are ruat, the radiated displacement will be:
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�! �!

U  r,t! � sin  o; + iJ !  t-r/C !] � � � �1!
�! k  ~+8! i  ~B! i. k

k  "+8!
Bv P ~r

This can be shown to be equal to zero for orthogonal propagation by

letting cos t! = 0 in the rescnance mnditions. 'Ihe vectors rk and

Sk   8! are ocplaner with the propagation vectors; therefore, the dis-�!

placernmt and direction of prcpagation of the  ~+8! transverse wave will

also be coplaner with this plane of interaction.

c! longitudinal-Transverse Interaction

and the 8 wave is transverse. In this case the source vector becomes:

S." = - l/2   !i+I@4![2 k ' K ! K ' K ! +  P, ' K ! K K !]

+  X + p + A/4 + 8!  R ' K !  K ' K !
cr. 8 a 8

+  A+8! A K!~K ~ ] A �2!

Upon examination of Table 3, one sees that there is no frequency ratio

that can satisfy the resonance ccndition for the  ~+8! longitudinal and

the  ~-8! transverse seccnd order waves. The  ~-8! longitudinal and the

 ~+8! transverse waves have possible frequency ratios, and therefore,

resonant radiation of these waves are possible. The direction of radia-

tion for each wave is colinear with the axis of the propagation of the

primary waves. The source vector is colinear with the direction of the

polarization vector A.. Then
i B!

�!
i  +8! i

and wc conclude that the only second order displacement due to longi-

tudinal-transverse interaction is the transverse wave:

Colinear propagation of the primary wave  A ' K = 0, A K = 0,
8 8 ' 8

A 7 = 0! will be considered first. !Jere the ~ wave is longitudinal



s�! v
Uk +! r, t!=sin[ z+~>!  t -r/C!!�! ~ k  ~+8!

8z pC~ r
0

�3!

For oblique interaction of the primary waves, the vector has c~nents

both coplaner with the plane of the propagaticm vectors and perpendicular to

this plane. Therefore, the  ~-B! 1cmgitudinal wave will be excited as

well as the  ~+8! transverse wave mentioned abam. Thus it can be mn-

cluded that a normal mcde transverse wave and a flipped mode langitudinal

wave will be generated when a longitudinal and a transverse wave interact

obliquely.

Before discussing the results found above, interaction of visco-

elastic plane waves will be amsidered. Once this is deme, the certain

inadequacies of volurre interaction will beccme evident.



COPTER V

INTEPACZION OF VISCOELASTIC PLAIK WAVES

In this chapter, the interaction of vis~lastic waves that are

propagating colinearly will be considered. Also for ccsivenience these

waves will be assumed to be propagating in the secre direction and have

the sana phase at the origin  x = t = o! . Nothing is lost by assuming

these two cmditions and the analysis can easily be redone to include

either or both of the excluded conditions. Also it is ~rtant to note

that these interaction cases cannot be derived fran the previous volume

interaction cases for reasons that will beccrre evident later. 'I%ere are

several distinct types of interaction to be considered when studying

the interaction of viscoelastic plane waves. 'Hmy are:

l. Interaction of transverse and longitudinal waves

2. Interaction of two transverse waves

3. Interaction of two longitudinal waves

4. Self interaction of a transverse wave

5. Self interacticm of a lcngitudinal wave

Let us consider plane waves propagating in the x direction. In this

case u is a longitudinal wave displacement field and u and u are two
X Z

orthogonally polarized transverse waves. If u.  r,t! = u  x,t! is
x,y,z

substituted into Eq.  I-37!, the resultant equations will be:

p3u - q + q/3� 3u -  X+2p! Bu
otx txx X X

[3 A + 2p! + 2A + 68 + 2C] 3 u 3 u
xxxx

+ [ g+2p! +A/2+B][3u3u +gu3u] ---  l!
xyxy x zxz
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p 3u -q33u -p3u
0 ty txy xy

[ A+ 2p! +Aj2+B]�u.3u + 3'u 3 u] � � - � � �!
xyxx xx xy

p 3u -na 3'u -n 3'u
o tz txz xz

f X + 2p! + A/2 + B] [3 u.3 u + 32u ' 3 u ! � � � � � �!
x z x x x x x z

The ~ve three equations cculd have been written as one equation as

was done in the preceding chapter, her, with the equations written

in this manner, it is easy to see what primary waves will interact to

form the various types of second order waves. Also the scalar Green's

function can be used to solve these equations whereas the tensor valued

Green's function was used to solve the vector equation of the last

chapter.

1! Longitudinal and Transverse wave interaction

In this section, the interaction of a longitudinal and a trans-

verse wave will be considered. The equations to be solved are equations

�! and �!, where the polarization of the transverse wave was arbitrarily

cho..en to !m in the z direction. The same equation governs the transverse

wave polarized along the y axis and by choosing either polarization, the

problem is carpletely solved as equations 2 and 3 show, orthogonally

polarized transverse waves propagate independently of each other. Investi-

gation of the ectuations will show that perhaps two seccnd order waves will

result when longitudinal and transverse waves interact. They are a trans-

verse wave and a longitudinal wave; however, the interaction that causes

these waves is distinctly different. The transverse wave is generated

by the interaction of the primary longitudinal and transverse waves.

Wter it will be shown that this interaction does not occur. The second

order wave is generated by the sum of the self interaction of the two
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p a u � <~+qg3! a au - ~+2p�u =0 � � � - � � �!�!  l! �!
0 t X txx x x

p a'u � n D ~'u -u a~u l! P0 t z " txuz " xz

The real part of the solution to these equations are:

u = IA ~ cos[v t � K' x] exp[-K"  ! x]�!
�!

�!  A ] cos [4! t Fp  ! x] exp [ K < ! xj

After substitution of the primary waves into the smroe terms and after

F'ourier transformation, the inhcrnogeneous equations governing the second

order displacezents can be found to be:

�2+ K2! U�! = S�!
x L k x  8!

�! �!
x Z z z

�-�!w»ore in S both waves are Longitudinal.
X

primary waves. That is the transverse primary wave interacts with itself

to form a second order longitudinal wave and the primary longitudinal

wave does the sarte..

Self interaction of waves will be ccesidered in a Later section;

however, the seccrxi order displacement field wilL be calculated here in

a slightly dif ferent manner.

As in the last section, the primary waves will be represented by

the real parts of the solution to the linear equations. 'Ihe linear

equations in this case are the scalar wave equations:



P{2! 3 X+ 2W! + 2 A+ 38+ C! 2 AA  ~'i 3 + 3 Kirk K~ !
x

4
cr cc ''L  cc! J,  cx! l, cr.!

4z p w
0

[exp[-2K'  x] 6 e + 2v !~[2K'   !x] 6 u - 2u> ! ]exp[-2K" x]

+ 2 [exp[-2K'   !x] 6 ~2 o ! + exp[2 K'   !x] 6 e-M ! ]exp[-2K"   ! ]~ -! L -!

0

[exp[-2K'  ~!x] 6 v + 2v>! ~[2K'   !x] 6 v � 2u!>! ]exp[-2K"   !xj
3.

+ [exp[-2K' x] 6 w + 2 o ! + ~ [2K' x] 6 z � 2e !exp[-2K"   ! j' 'T S! % a!

For the z equation a longitudinal and a tran~se wave that are propagat-

ing cx>linearly are the ccrrpanents of the source term. These ~ waves

will always have a zero resultant for the source texm because A ~ A = 0.
cc

T!au.; the only second order wave generated will be the longitudinal wave,

and this wave will bo due to the s< lf interaction of the primary waves.

The solution to the inhcrmgeneous equation can be found by using the scalar

Green's function:

i exp[iK  x - x'! ]
x>x

G  Xqx'!=
i exp[-iK  x � x'! j

x<x'

'Lhen the second order displacarent will be given by the real part of the

solution of the inhcmogeneous equation
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m

U  x,t! = REg y exp -i~t! G  x,x'! S  x'! chdx'�! I ~ . =., -�!
x ' f j x �2!

where k is the interaction length or the distance through which the wave

interacts. This length would in general be the field variable x if the

waves were propagating in a hanogeneously nonlinear media and also if

the primary waves were generated at the origin. There is ewe interesting

and physical case where the field variable is not equal to the interac-

tion length k and that is as follows. Ef the primary waves  or wave!

were generated at the origin with sufficient amplitude  A ~! and that

there was nonlinear interaction, either self interaction or mixed inter-

action, a second order wave would be generated up to a point x = P., at

which tom the primary wave or waves have been damped to such an extent

that the argurrent of second order smallness beccxres valid and the second

order wave generated after the point x = R beccxres insignificant. In

this case the second order wave would be "radiated" along the axis of

propagation of the primary waves until it also danps to an insignificant

arrplitude. 'Ihe case where the field variable x is equal to L is derivable

frcarr the results obtained by the integration of Eq. �3! and will be

discussed further for the cases of self interaction of waves.

'Ihe cases involving second order wave propagation in nonlinearly

inhcxmgeneous rredia will not be solved here; however, the methods for

salving these problems are similar to those ccnsidered and these problems

are at least ccnceptually no more difficult to solve. For instance, if

the. rrediurrr of propagation was characterized by a strip of nonlinear

material confined between t!m end points  a,b! the second order displace-

ment could be solved for by changing the limits of integration of the

variable x' in Hq.  l2! ta  a,b! and by letting the Larrre par@ra ters X

and p be zero where they appear explicitly in the source term.
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As notioned before, the secxmd order displacmmnt is due in the

ca"e of longitudinal-transverse interaction only to the self interaction

of the primaxy waves. Because self interaction will be considered later,

the result in this case will be written down with only the following

explanation.

The second order displacertent is the real part of the solution

to the inhmngenems ~tion. If Equations �0!,  ll!, and �2! are

canbined, the real part of the solution can be found to be:

U�!   t! 3 A + 2>! + 2 A + 3B + C!  
16m p �v !

Vl
V  [cos Ml cos Pl - sin Ml sin P ] exp  Nl exp 1 cos 1 exp  N ! }'3

V2
[ 1 1 1 sin P 1] exp  Nl! exp  Ql!  Ml!exp   1! ]

V4
� �  [ cos K cos P � sin M sm P ] exp  -N !exp ~1! cos M exp N ! }

6

V  [sin Ml cos Pl + cos Ml sin Pl exp Nl exp Wl + sin Ml exp Nl ]
6

 A + 2~i! + A/2 + B

p �~ !
0

V  [cos M2 aos P2 � sin M2 sin P2] exp  N2! exp  Q2! � cos M2 exp  N2! }

V8
+ �  [sin M2 cos P2 + cos M2 s~ 2 exp  N. ! exp  Q ! - s~ M2 ~  N2! }

9

[[cos M2 cos P + sm M2 sm P ] exp -N !exp ~'!+cos M2 exp -N2! }10

12

ll

V 2 2 2 2 ~ 2 ~ 2 2 2
12

�3!



Q = + 2  o'-l!K"
1 L "!

Ql = + 2 �'+1!Y~

2u!~t � 2 y "K'  ~!x

N2 = 26" K"   ! x

y' �+ h! ' [ l+ 4~5! [ ]l 2

I
� + ~ A ! [� + A ! [+] 1]

y" ared 5" are as above with ~ replaced by ~



~2 [6�+1! K"   ! - y" 1 KL  ! 1

� [6 y-1! K"   !K'  ! + y�+1! Q  !Q  !]I'2

3 [  y- 1 ! Q < ! ] + [   6+ 1 ! K"   ! ]

� [6 y-1! K"  �!K'  ! y V-1! K"]l'2

[ y-1! K'  ! ] + [�-1! K" ]

L 8! L jl! T 8! L H! y L S! T g! ! ] 3

L H! T 8! L E! L l3! T g! 4
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L 8! r  8! L 8! r  8!

10 L 8! L 8! T 8! L 8! L 8! T 8! 3

"""L' 8! ""'L' 8! r 8! ' '"L' 8! ""L'  8! T 8! " "4

'» = """L 8! " "'i 8! T' 8! ' ""L 8! ""L'  8! r  ! ' "3

L 8! L  8! T  8! L  8! L  8! T  8!

'12 = "'"L' 8! 'T 8! ' ' "L' 8! T 8!'

arx1 where:

"l = 'L' -! ' ' L' -! L -!

2 L ~! L ~!

3 'T 8! T 8! T 8!

'T 8! 4 8!

N~ the nature of the second order wave can be investigated. The terms

whose argurrent is M shear that tlat wave oscillates with frequency M or

and prcpagates with a speed that a viscoelastic wave of this fre-
8

quency would. Also as the terms with N as the argument shcws, the wave

dissipates at a rate indicative of a wave of this frequency. The terms



with P and Q as ar~ts show the functional dependence of the wave

interaction. It is interesting to note that the wave wilL increase in

arrplitude in an oscillatory manner, then decrease in the sarre, manner.

Xn this case, the P terms modulate the wave and the Q terrm dissipate

the wave. Investigation of the P and Q terms of the contribution for

the transverse wave will sh~ that the amplitude of the second order

wave is dependent on the difference between t!m magnitudes of the

propagation  arxl dissipation! vectors of the longitudinal and transverse

waves. This is a very interesting and physical phenarencm ax@3. will be

rliscussed in the next section.

2! Interaction of Longitudinal Waves

'lM interaction of two distinct Lcngitudinal waves will next be

considered. As seen in the Last section, a seccnd order longitudinal

wave will be forrred when these waves interact. Tne equatim to be

solved is;

p 3U �  q+n/3! g QU �  gy2p!
o t x txx X X

� A+ 2p! + 2 A+ 39+ C!]
xxxx

The primary waves can be written in the form:

U = A cos[~ t � K' x] exp  -K" x] l!
x - - 'L  ! 'L -!

+ A~ cos [u~t - K' ~!x] exp  -h"  ~!x]

After substitution of the prirrrary waves into the perturbed equation of

motion, and after Forier transformation, the equation to be solved for

the second order displacermnt can be sheen to be:
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!= s 
x L x x

where:

E � 3  +2 ! + 2 A+3&K.' A  
X 2  X

~+ g 41Tp 4!
0

r, r
 expf- K' ~ ~ K' !x]6  ~ +  ~ ~>l!

- exp [-  KI   ! + K'  ~! ! x] 6  m  u! +u8! ! ]

+ [exp[  k   ! K  !!!x]6 u! +  u! +u! !!

� exp[- E'  ! + K'   ,!!x]F  u- u! +~ ! ! ] '

~ exp [  yw y yl'I !x] !   17!
~ -! ~ 8!

where:

8 = L -! L -! h a! + L s! K s! 4 -!

As before Glee second order displacarrent is found by using the Green's

function expressed in Eq. �1! . Then:

R ~

U  x,t! = RK f J exp -mt! G  x,x'! S  x'!d~dx' � � � � � � � �8!�! ~ ~ . -, -�!
Q



By performing the indicated cperations, the secand order displacertent
will be found to be:

U�!  t < 3 A+ 2u! + 2 A+ 3B+ C! x,t! = K A A�{
~-'9 16mp  g + u !

0 ~ 8

13� ~ � [[cos M cosP � s 3 sinP ] exp N ! exp Q ! - cosM exp N !!
15 3 3 3 3 3 3

14
+ ~  [s 3 cosP3+ cosH s~ ] mp N ! exp Q ! � s~ exp N !!

15 3 3 3 z 3

16  [cosH cosP � s~ M sznP ] exp -'v ! exp ~'! � ~M exp -N !!
18 3 3 3 3

'17
~ [ [s 3 oosP + cos3 s~ ] exp -N ! exp -Q'! � sard exp  -N ! ] j

18 3 3 3

where:

13 L  -'8! L  -+8! L  ! L 8! L  +8! L  '8! L  ! L 8! 5 6

L  -'8! 'L "-'0! L  ! L 8! L  -'8! L  -'8! L  ! L 8! 7 8

L "-'8! I   -'8! L  ! L 8! L "-8! L "-'-0! L  ! L�!

'L «-'8! L  -'8! L  ! L B! L  -'8! L  -'l3! L -! L r! 7 8

15 L  -'5! L  ! L 8! L  -0! L  ! L 8!

16 L  -'8! L  -'8! L  ! L 8! L  '8! L  '8! L  ! L 8! 5 6

[ L  -8! '"L - 0! '"L -! "L�! ' "L -.8! "L - 6! ' L -! ' L 9! "] ' 7" 8'
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'l7 = ''L' -.t! "L' - S!-'4 -! A r,! "-'L' -=~! 'L - S! 'L' «! K S!"""S-'6'

L{ -'8! L  -8! L "! L�! L  -'8! L  '8! L  ! L 8! 7 8

10 L  '8! L  ! L�! L  '8! L  ! L g!

and where:

H3   g �  A!!! t KL  !!x

3 L - 8!

3 = ' L - 8! '"L  ! � L 8!" ~

Q3 [ Q  +g!  KL  ! Q P! ! ]

3 {«8! L  ! L B!

Thus we see that two second order longitudinal wave." are generated when

two primary longitudinal waves interact. Tl~ second order waves have

the frequencies of {z + z ! and  u � ~ ! . Because of the frequency

dependence of dispersion arrl dissipation, the wave of frequency  ~ - ~~!

is generally regarded as the irrportant product of this type of interaction.

These two second order waves, when added to the priv~ waves will tend to

altar the shape of the primary waves. Under sam conditions, the shape of

the total displacen~t field approaches that of a shock wave.

3! Interaction of ~ Transverse slaves

Previously it was shown that when two primary longitudinal waves

interact,, a second order longitudinal wave will be generated. In this
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paragraph, it will be shown that a similar longitudinal wave will be

generated when two transverse waves interact.

The equations to be solved are:

~o tx ~ " txxU�!   + /3! g !>U�!  !, ~ 2 ! O'U�!
xx

[ A+2I! +M2+a][a'V a U + O'U 3 U ] ---- �O!
xz xz xy xy

p 3 U -q 3 3 U p3 U =0�! �! �!
0 t yz t x yz x yz �1!

The primary waves could be written in the form.

�!U  x,t! =  A   !, A   !! cos  u t � K'  !x! exp  -K"   x!

+  A  ~!, A.  ~!! ccs  ~~t � K'  !x! exp -K"  ~!x! � � �2!

and substituted into the source texm of the inhavageneous equation;

however, it is easier and more instructive to write the source term of

�O! as:

[ A + 2p! + ~2 + V] O'U - a U,
xTxT

�3!

-~ �!
where V, is V~c primary transverse displacerrent:

�4!

After the source term of Eq. �1! is replaced by D!. �3! and the pr~

displa~t substituted into it, the Fourier transform of the equation

to be solved will take the form:

�' + K'! U  x! = S  x! �5!

+ �!UT = A  ! cos [b! 't-K,  ! x] exp [-K   ! x] + A ~! cos [QJ~t K  ~! x] exp [-K  ~! x]
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where;

>�!  ! <  ! +2p! +A/2+B
X a+  47k 4P

A 3! K
P

 "9 -' "lp! 2 � ~ exp f-  KT'  ! '- K'  g! ! ] 4  < +  ~ '-~!! ]
1.

� exp +  '  ! K' 8!!x]44- ~ -~>!!]exp - K"   !+K"  >!!x

+  ~11 -' t'12! 2  exp -K'  ! '- K' g!!x]4 [tA +   �'- g! ]

+ exp[ K'   !'-K'  p! ! x]5 97-  d 'u!g! ! j exp - K"   !+>~"  g! !x

�5!

where:

Tlu seccmd order wave will be given by:

R
�! -�!

U  x t! =BE
X

exp -i~t! G  x,x'! S  x'! ~R'~ � � � � � �G!
L ' x

Q

Af ter performing the indicated operations the clisplaccnent is.
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19� � [ [cosH4 casP4-sin M4 sinP4] exp N4! exp  Q4!-casM4 exp N4! !
21

+ { [sinM4 cc6P4 + cosM4 sinP4] exp N4! exp  Q4! -sinM4 expN4]20

21

� �   [cosM cosP � sinM sinP ] exp -N ! exp{-Q'! - cosM exp -N ! !
4 4 4 4 4 4 4

'23� � { [s~i4 cosP + casH s~ ] exp{W4! exp -Q4! � sum4 exp  -N4! !
24

where:

M4 =  � + d8! 't � K   ~8! x

'4 = L' - 8!"

L  8! r'  ! T 8!

"4 = ' 'L' - 8!   'r -! ''T' 8!!"

r. - 8! ' ' r -! ' r 8!]

19L  +8! L ~+8! T ~! T 8! L -'-8! L ~'8! I' -! T 8! 9 lo

' L - 8! ' L - 8!' T  !+ T 8!" L - 8! ' L  6! ' I' -! T 8!"''"ll 12'

20 L  8! L  8! r  ! % 8! t{ +8! L{ +8! r  ! ~r{8! V 10

II {rt I   I ! y I II
L - 8! L{- 8! T -! r 8! L - 8! L - 8!+ ~" +K~ !!]  I' .-I' !KT  K! KT  8! 11 12

'"L -=8! ' r -! -'T{8!" ' 'L -~8! ' ' r -! ' r 8!"



23 L ~+6! L ~+0! T ~> T B! L ~-'8! L ~+8! T ~! T 8!

L c+g> L  c + f3! T ~! T�! L ~+8! L ~+!! T ~! T  8! ll 12

24 L  -'8> T «> T 8> L  +8! T  ! "T P>

4! Self Jnteraction of Viscoelastic Transverse Waves

Self interaction of a transverse wave will be considered next.

The result of a transverse-transverse wave interaction is the generation

of a longitudinal second order wave. Also, the seccnd order wave will be

a normal mode wave with the flipped mode wave being zero in the case of
e

self interaction. Unlike the previous analysis, the interaction length

will bc specified as the entire length of the field variable x. That is

the second order displacement will be given by:

U  x,t! = HK J f exp -i~t! G  x,x'! S  x'! Aodx' - - - - � � �7!
p

The equation to be solved for the primary wave is:

p 32U l! 3 3>U�! ~ 32 U l! �8!

The real part of the solution of this equation is:

U  x,t! = A cos w t � K'   !x! exp -K" x!�!
�9!

Here the polarization was arbitrarily chosen to be in the z directicn.

The inhcrnogenecms equation whose solution will yield the second order

di~lacement is;

22 L  ~-+8! L  ~'-8! T  ~! T  8> L  ~-+8! L  "'-8! T  ~! T 8! 9 10



p av -  q+ny3! aaU - X+2p! 3U�! �! 2 �!
p t x txx X X

[ ! + 2u! + V2 + a] S'U
x z x z �0!

After the primary wave is substituted into the in!xxncgeneous ecp.tatian

and after Fourier transformaticn, the equation takes the familiar form:

!+~'6 ! =s !

where the effective source term is given by:

-��!  A + 2p! + A/2 + 3
 x!

X
4z p w

0

[exp[-2iK' x] h  w+2w ! ~[2K' x]6  w-2w ! ]exp[-2E" x]

where:

"3 = '  % ~! ' ~r' S! r S!'

"4 � ' ~r�! r' ;!

By using Eq. �7! and the Green's function expressed in Eq.  ll! p the

real part of the solution and hence the second order displacement can be

found to be:

�!  ! !,+2p+A/2+8U  x t! = + J QA!
16m p �w !

r

+ 2 [exp[-2iK' x] 6 ~2w>! + exp[2K'  ~!x]4  w-2w<! ]exp[-2K" x] ! � � �2!
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28 3 L 8! 4 L 8! L 8! ~' 8!

4 " L 8! 3 k 8! I. 8! r 8!

29 3 " L 8! 4 L 8! L 8! I' 8!

4 " L B! 3 L B! L B! T 8!

30 L B! T B! L  8! T 8!

Xnvestigation of Gq. �3! scans to indicate that the second order

longitudinal wave is due to a sum of two waves of frequencies &8. One
of these waves prcpagates with the speed of a transverse wave and the

other propagates with the speed of a longitudinal wave. This is an

incorrect interpretation and is due to the fact that the second order

displacenmt is written in the most ccmpact manner and not in a form

which is instructive.

The expression frcrn which +. �3! was extracted is:

,{2! {!, + 2ii! + ~2 + DU'  xF L! ''[
16>r p {2u !

0

25 26  exp[2i ~ t - y"K' x!] exp[26"K" x]
'27

[1~ [2i y"K'  8! � K'   ! ! x] exp [-2 � "K"  8! + K"  8! ! x] ]

+  exp[-2i u t � y"K'   !x! ] exp[-26 "K"  8!x]28 29

30

[1~[-2i y"K'  8! - K', 8! !x] ex~[2{6"K"  8! + K"  8!x! ! !

�4!
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'Ibis expression, although it is not the second order displaoenent  its

real part is! shows the nature of transverse wave self interaction.

In each term there is an egression for a second order longi-

tudinal wave with a coefficient which is of the form:

[l~[2i y "K'   ! � K'  <!xj exp[-2 b "K' <! + K"  <! !x]

5! Self Interaction of Lcngitudinal Waves

Fran the results of longitudinal-longitudinal interaction, we can

conclude that a second order longitudinal wave will be produced when a

pr~ longitudinal wave self interacts. 'Ihe equation to be solved

for the second order displacerrent is:

p 3'u -  C +q/3! 8 O' V -  Z+2q! 3'U
!�! �!

[3 X+2p!+2 z+3u+C!j 3U aV ------ �5!�! �!
xx xx

and ~~e primary wave is:

U  x,t! = A cos [~ t - K'   xj exp -K" x! �6!

Substitution of Eq. �6! into Eq. �5! and courier Transformation

result" in:


Q�! + 20�! - �!
�7!

'this is in effect a modulation function and it is due to the interaction

nature of the wave. The harmonic term can be thought of as a longitudinal

wave propagating away from a transverse wave. This is exactly the case

of self interaction of a transverse wave.
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Where the effective source term is given by:

-�! 3 A + 2! ! + 2 A+ 3H + C A 2
 x!

4m p  u!!
0

F [exp[-2i K' x]5 uH-2u! !-exp[2i K'  !x]h z-2u! ! J exp[-2K" x]]
2

l2
+ �. [c~[-2i K' x]6 W2u! ! + exp[2K' �!x]6 u-2~ !] exp[-2K"   !x!]]

�8!

where:

1 L ! L ! L  !

2 L  ! L  !

Vy using Eq. �7! and the Green's function expressed in ~. �1!, the

soiution to the inhcmgeneous equation can be found to be:

,,�! 3 k + 2p! + 2 A+ 3B+C! ~  
16st p �u> !

Q

31 32$33 exp[21. u t � yK !x!][24'Q !x]

h3~ +

36

[1~[2i y'-1! K' x] e~[ 2 b' + 1! K   ! ] ]

{exp[-2i z t � y'K' x! ] exp[-26'F'" x]
  ! a  !

[1-exp[-2i y' - 1! K' x] exp[2� + 1! K" ]! ! � � � �9!
~  cc! L -!
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The real part of the ~e yieMs the displacenent:

V,  x,t!� !  !  + U+ + "+ AA<
16~ p �w !'

 cos[2 w t - K' x!] exp -ZK" x!31

33

� cos[2 w t � y'K'   x!] exp�6'K" x! ]

+ ~ [sin [2  w t � K'   ! x! ] exp  -2K"  �! x!'32

33

� sin [2 w t - y'K' x!] exp�6'K" !x!

{sin[2 w t - K'  x!] exp�K"   !x!34

35

� cos[2 w t � y'K' x! ] exp -26'K" x!

+ >�  -s~[2 w t - K' !x!] exp�K" x!35

36

+ sin[2 w t � y'K' x! ] exp -26'K" x! !] � � � �0!
~ a! L  !

wit're:

~31 ["ly K  ! ~26'K"   !]�+ 6'! K"   !

["2y K  ! + 1'16'K"   !] y' � 1! KT'  !

32 [ 1 'Yg  ! 26 L  !] y' - 1! KL «!

+ [I'2y'K'  ! + I'16'K"   ! ] �' +» !Q �!



~34 [I ly KL  ! I 2~'KL  ! ] �' � 1! L  !

2y L ! 1 L ! L !

35 ly+ ! 2 L ! y L !

+ [< 2y'K'  ! � I' ll K"   ! ] �' � 1! K"   !

f �' � 1! K" ] + [ y' - 1! K' ]
36 I  ~! z  -!

The significance of this result will new be discussed.



StZMhHY AND DISCUSSION

~ types of interaction of waves in a solid have been aonsidered:

volume interaction of viscoelastic waves and interaction of viscoelastic

plane waves. Volund interaction of visccelastic waves was investigated

only to the extent of calculating the far field displa~t. Further-

more, only the purely elastic wave was considered when resonant interaction

was studied. The results are surmarized belch.

1! Transverse- transverse wave interaction.

a! Colinearly propagating, orthcgonally polarized transverse

waves not to interact.

b! Colinearly prcpagating, non-orthogona lly polarized waves

will not interact resonantly.

c! Obliquely propagating, orthcxyonally polarized transverse

waves interact resonantly to form a flipped  -8! rxxle

longitudinal wave,

d! A flipped rreQe lcngitudinal wave is also produced when

Wliquely propagating, nonorthogonally polarized waves

interact.

2! I~gitudinal-longitudinal interactions.

a! Colinearly propagating langitudinal waves will interact

to form both a normal mode  ~+I',! and a flipped  ~-8! rmde

longitudinal wave.

b! Non-colinearly prcpagating longitudinal waves will interact

to form a normal axle transverse wave. The polarization

and direction of propagation of this wave is ccplaner with

the propagation plane of the prim~ waves.
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c! Orthoqonally propagating 1cmgitUdinal waves do not

interact.

3! Longitudinal-Transverse wave interaction.

a! Colinearly propagating longitudinal and tr~m.se

waves interact to form a normal mode transverse wave.

b! Obliquely prcpagating 1cngitudinal and transverse waves

produce a flipped mode longitudinal wave and a normal

mcde transverse wave when they interact resonantly.

Et must be pointed cut that these waves are not the only waves

present in a physical interaction situaticn. 'Ihe above mentioned

generated waves are due to "strong" or resonant interaction and they

are the waves that are radiated away fry the primary deformations. 1he

far-field approximation of the Green's function was used to calculate

these second order waves. Had the entire Green's function as expressed

Hq.  IV-22! been used rather than ttu.s approximation, the resulting

second order displacanent would include all of the nonlinear waves. For

instance, in the resonant interaction of colinearly propagating transverse

and longitudinal waves, the flipped mode longitudinal wave was found to

be zero by using the far-field Green's function; however, this wave will

have a nonzero value if the entire Green's function was used. Also by

using the entire Green's function, it, can be seen that both the norrrel

and flipped mode transverse waves will be generated when two transverse

primary waves propagate colinearly.

Fran the abave sta~ts cne might conclude that the analysis

should be done by using the entire Green's function rather than the

approximation. 'Hu.s ccnclusion would be valid if it were not. for the

following points.



The volvo~ of interaction must be spherical for the Green's

function in question to be valid, and the wave radiated must be a radial

wave. If one is to calculate the near field effect of interaction by

using the entire Green's function, then the interaction volurre aust be

specific more precisely and the appropriateness of the Green's function

reestablished. One need only consider the interaction of colinearly

propagating waves to see the point.

One very physical way of handling the interaction of colinearly

propagating waves is by the rrethods of interaction of plane waves.

By using these ruth's, we found that either a normal or flipped mx3e

longitudinal wave was formed when any of t2ie following interactions took

place:

Longitudizal � ~gitudinal

Transverse - Transverse

Longitudinal � Trar~verse

Transverse self interaction

Longitu~al self interaction

The resultant nonlinear. wave due to Longitudinal-Transverse interaction

was actually a sum of two longitudinal waves that. were caused by self

ter ~ction of the primary waves. Therefore we conclude that colinearly

propagating longitudinal and transverse waves do not interact with each

other.

The form that the secor@I order longitudinal wave takes when ~

longitudinal waves interact is given by Eq. �9! . f ere »e see that both

nozmal aml flipped mme waves are generated. We can also see that no

interaction will occur when
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and that. the second order wave is ma:~zed when:

2
In spite of the term  ~ +~ ! in the denaninator, the flipped mode wave

due to primary waves of nearly the sarge frequency will not have an

arrplitude of infinity. Tn fact the entire contribution of the coefficients

will tend to make a flipped rxxle wave of lcm frequency have an amplitude

of zero. Also the normal mode wave with high frequency will not be

unstable because of the familiar effects of dissipation. One then con-

cludes that there is an ideal frequency for the second order wave that

m-~zes its amplitude. This wave of ideal frequency can either be a

normal or flipped rrode wave; however, the mode with nonideal frequency

will probably be much smaller than the ideal wave. Such a wave would

then correspond to the wave due to resonant interaction of the volurre

interaction cases. No attempt was made to find this "ideal" frequency

because it is believed that considerable numerical analysis will be

necessary to find this frequency analytically.

A similar seccnd order longitudinal wave will be generated when

two transverse waves interact. Ln this case, the conditions of no

interaction arer

Q  ~gg!  Q ~! 4gs  g! !!

and the conditions for maxirrrum interaction are:

N=O, l,2,

We sarre frequency dependence of the arrplitude of the wave in the longi-

tudinal interaction is present here. This strong frequency dependence

seems to indicate that the second order wave is highly dispersive, That

is, a spectra of rronlinear waves may tend to filter itself to the "ideal"



For longitudinal-Longitudinal interaction this is:

,�! = E 3 A+ 2p! + 2 A+ 38+ C!U'  x t! = E cd
++8 16m p  u 'u! !

o ~ 8

13 14 exp [i    ~ '~8! t � E'  , ! x! ] exp [K"  ,8! x]
15

L  +8! L  ! L 8! L  8! L  ! L 8!

P.16+x, h 17

18
exp[-i  ~ >ui ! t-K'  !x! ] exp[-K" x] ~

and for TransverseWransverse interaction, a similar term exists.

 X+ 2q! ++2+a

~+8 16m p  u +e !
o ~ 8

19+ih20
exp[a.   w +e8! t � K'   8! x! ] exp [Ig  8!x]

21

frequency as it prcpagates. A spectra of nonlinear waves may be

generated by a similar spectra of linear waves or by higher order inter-

action of the primary and nonlinear waves. 'H~s filtering effect of

nonlinear waves may be responsible for the characteristic shape that

nonlinear waves which propagate lang distances have �4! .

'Pie magnitude that the semnd order wave will have is very rich

dependent on the interaction length. This can be seen by not writing

the displacement but rather writing the solution to the inhcxmgeneous

equation.-



67

22+ih23+ exp[i  e +m<! t � K' +,!x! j exp[-K" x]
24 L  -'8!

L  +5! l' "! T 8! L ~-+8! 1'  ! T 8!

�!

Both equaticms are very similar, each ten«consisting of a hao~nic expres-

sion t!mt represents the second order wave multiplied by an expression

tk~t represents the interaction of the waves. One can see that the

amplitude of the second order wave will be dependent on the interaction

length k, and that there will be definite values for R that will maximize

or minimize the magnitude of the second order wave.

If the privy waves interact for the distance up to or beyond

,the field variable, then the abave equations are rmQified by letting

K = x. In this case the coefficients of the second order waves becxxne

~ulation functions and it can be seen that the amplitude of the second

order wave will fluctuate along the x axis. Also the amplitude will grow

or decay in this fluctuating manner depending on the values of K and

'   !!

A second> order longitudinal wave i., forrx~l when either a longi-

Lu linal or a trarL ver"e wave interacts with itself. In the ca.';es c

self interaction, the interaction length was assunvQ to be the entire

length of propagation of the primary wave. Again the nonlirx.ar wave will

be rrcdulated in time and space, and hence there is a specific length for

the field variable that will maize or minimize the second order

effects of the wave in a specific region.

With all of the types of interaction having been investigated,

an interesting phencmencm can be observed. Because a second order trans-

verse wave is not generated when a transverse primary wave self-interacts,

the foehn of the primary transverse wave will be independent of nonlinear

effects, whereas the second order longitudinal wave produced when a
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primary longitudinal wave self interacts will add to the primary wave

and alter its form. Why anharmanic effects alter the form of a

longitudinal wave and not that of a transverse wave can he e~lained as

follows.

The speed of any point on the profile of a longitudinal wave

is given by:

v= Q+ jt U t!

The change in the wavefoxm of the wave is due to the particle velocity

v being different for the various points on the wave form. This can be

causcct by two HRchanxsDls ~

1! C is dependent on the ccrrpressed or extended state of the

media and therefore it varies over the range of the period of the waveform.

2! The particle velocity coincides in direction to C  and v!

for a longitudinal wave and decreases or increases v accordingly.

This is not the case with a transverse wave though. First

cmpressions and extensions do not occur when a transverse wave prcpagates

anal seccndly the particle velocity is perpendicular to the propagation

velocity for transverse waves. Therefore the particle velocity will

ranain constant at all points on the profile for a transverse wave and

the wave will retain its form. We longitudinal wave will distort due

to the change in particle velocity on the profile as we have found in

the analysis. This distortion  due to axAarrxmic effects! is often

referred to as internedulation distortion.

A final note on how the nonlinear elastic constants can be found

is nmu in cevker. We have found that there are two types of interactions

that occur when the primary waves are propagating colinearly. They are

transverse-transverse and longitudinal-longitudinal interactions and they
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both result in a longitudinal second order wave. Although there are

Qmee nonlinear ccmstants they cmly appear as two algebraic cernbinations.

A+ 3H+ C

and A/4 + 8

The first appears in the coefficient of the second order wave when

longitudinal waves interact and the second appears in that when transverse

waves interact. This interaction can be either distinct or self. 'Ious

these ccmbinations of constants can be found by investigating, say, the

elf interaction of longitudinal and transverse waves. In this case

equations IV-35 and XV-38 would give the nonlinear coefficients if the

linear par~ters  K,p,<,q!, frequency of the wave, distance of propagation,

amplitude of the primary wave, and amplitude of the second order wave

were known. The linear  isothermal! pararreters can also be determined

by a wave propagation experiment; however, inclusion of that experixtant

Q>is discussion is not appropriate. A ccnvenient way of determining

the amplitudes of the waves is described belier and the necessary apparatus

is shown on Plate l.

The apparatus has provisions for mcnitoring Um irput spectra and

oust spectra of waves of two polarizations, longitudinal and one trans-

verse direction. Fmn the output. spectra, both the anplitude of the

sec<md order wave and that of the linear wave can be obtained. 'Ibis is

accxmplished by knming the coupling coefficients of the crystals and &e

setting on the amplifier. In order to perform the necessary calculations,

the primary wave amplitude must be knmm. If the output amplitude is

kn~, then the input anplitude can be found by using the following:

A = A, exp -K" k!
out in



70GE ~ CION

Transverse Crystal

Longitudinal Crystal

PLATE I

ApParatus for finding the second order coefficients.
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'Iho frequency of the oscillator is precisely determined by the

fr~ency counter and the input spectra is mmitorec3 to be sure that the

primary wave is monochrmutic. Ply photographs on Plate II shaw the

input and output spectra for a 5 g ~<zlongitudinal wave propagating through

a path length of 20 cm of an acrylic resin plastic. We input spectra

shows only a g K Hzorimary wave and the cmtput spectra shms the primary

wave and the nonlinear wave. 'ibis will be the type of data needed to

cbtain the nonlinear cxmstant ccxnbinations.

In occlusion, we rmst state that in addition to being interest-

ing, nonlinear viscoelastic waves can be significant and that this

aru~txmic phenu~icn deserves rare theoretical, numerical and empirical

study.



Figure  la! Figure  lb!

Figure �b!Figure �a!

input  Figs.  la! and �a! ! and output  Figs. �b! and �b! ! spectra for a
5K Hz ~ave propagating in acrylic resin plastic.

Plate II



73

�! A. L. Thuras, R. T. Jenkins, and H. T. O' Neil, "Kxtranams Frequencies
Generated in Air ~ing Intense Sound Waves," J.A.S.A. 6,
173 �934! .

�!

S. Gorelih, V. A. Zverev, "Prcblem of Mutual Interaction between
Sound Waves," Ahust. Zh. 1, 4, 339-342 �955! [Soviet Physics-
Acaustics, Vol. 1, p. 353].

X. Solvyan and R. V. Khokhlov, "Propagation of Finite-Amplitude
Acoustic Waves in a Dissipative Medium," Vestn. M.G.U., 3, 52-61
�961! .

�! S.

N. Andrew, "Concerning Certain SecorxlE3rder Quantities in Acoustics,"
Ahust. Zh. 1, 1, 3-11 �955! [Sav. Phys.-Acoust., 1,2,  l957!].

�!

K. Zarembo and V. V. Shklovshaya-Kordi, "Propagation Velocity of
Finite Amplitude Ultrasonic Waves in a Liquid," Ahust. Zh. 6, l,
47-51 �960! [Soviet Physics-Acoustics, 6, pp. 42, �961!].

�! L.

G. Mi!dmilov, V. A. Shutilov, Distortion of the Finite Amplitude
Ultrasonic Waveform in Various Liquids," Ahust. Zh., Vol. 6,
No. 3, pp. 340-346  l960! [Soviet Physics-Acoustics, Vol. 6, pp. 340
�961! ] .

�!

A. Naugolnykh, S. I. Solvyan, R. V. LR;&B'av, "Nonlife~ Interaction
of Sound Waves in an Absarbmg Medium," Ahust. Zh. Vol. 9, No. 2,
pp. 192-197 �963! [Soviet Physics-Acoustics , Vol.9, No. 2, pp. 155,
�963!] ~

 8! K.

A. Ostroshii, "S~~rder Terms in a Traveling Sound Wave,"
Ahust. Zh. Vol. 14, No. 1, pp. 82-89 �968! [Soviet Physics-
Acoustics, Vol. 14, No. l, pp. 6l �968!]-

 9!

A. Goldberg, "Plane Acoustic Waves of Finite Amplitude in a
Viscous Heat-conducting Medium, "  Disseratation! [Acoustics
Institute, AN SSSR, �958! ].

�0! Z.

R. Larevstad, "Nonlinear Interaction of Two Monochrmatic Sound-
Waves," Acoustica, Vol. 16, No. 4, pp. 19l  l965!.

�1! V.

Rxnilly, "On~ixrensional Nonlinear Waves in a Dissipative Gas,"
Acoustica, Vol. 25, No. 5, pp. 248 �971!.

�2! N.

O. Berktay, "Possible Exploitation of Nonlinear Acoustics in
Underwater Transmission Applications," J. of Sound arxl Vib.
Vol. 2, No. 9, pp. 435-461 �965! .

�3! H.

J. Lighthill, "On Sound Generated Aerodynamically; I General. Theory,"
Proceedings of the Royal Society A211, pp. 564-578 �952!.



74

�4! D. G. Tucher, "We Exploitation of Non-linearity in Underwater
Acoustics," J. of Sound and Vib., Vol. 2, No, 4, pp. 429-434
�965! .

�5! D. T. 131ac!-st~ "Propagation of Plane Sound Waves of Finite
Aroplitude in Nandissipative Fluids," J.A.S.A. Vol. 34, No. 1,
pp. 9, �962!.

�6! R. Y. Chiao, E. Garbed.re, an� G. 1{. Townes, " Self Trapping of
OIitical Beams"
Phys. Rev. Letters 13, 479 �964! .

�7! A. Yildiz, "Light and Sound Emissions from non-linear Plasm.
Fl~wations," Physical Review Vol. 136, No. 2A, pp. A393-A409,
�964! .

�0! Landau and Lifshitz, "Theory of Elasticity," Second Edition,
Reading, Nass.: Addison Wesley.

�9! Z. A. Goldberg, "Interaction of a Plane Longitudinal and Transverse
waves," Ahust. Zh., Vol. 6, No. 3, pp. 307-310 �960! [Soviet
Physics-Acmstics, Vol. 6, No. 3, pp. 306 �961!] .

�0! G. L. Jones and D. R. Kobett, "Interaction of Elastic Waves in an
Isotropic Solid," J.A.S.A., Vol. 35, No. 1, ~. 5, �963!.

�1! J. D. Qu.ldress, C. G. 11anbrick, "Interactions be~ Elastic
waves in an Isotropic Solid," Physical Review, Vol. 136, No. 2A,
pp. A411, �964! .

�2! L. 11. Taylor, F. R. Rollins, "Ultrasonic Study of Three-Phonan
Interactions," Physical Review, Vol. 136, No. 319, pp. A591
�964! .

�3! A. A. Gedroits and V. A. Krasilnikov, "Fini& Amplitude Elastic
Waves in Solids and Deviations from Holli's Law," J. of Explt.
Theoret. Phys. 43, ~. 1592-1599 �962! [Soviet Physics JE'IT',
Vol. 16, No. 5, �963! ] .

�4! I. A. Viktorav, "Effects of a Second Approximation in the Propagation
of Waves Wrough Solids." Ahust. Zh., Vol. 9, No. 3, pp. 296-300
�963! [SOviet PhySiCS-ACOuStiCs, Vol. 9, No. 3, pp. 242 �964!].

�5! L. A. Pospelov, "Propagation of Finite Pzylitude Elastic Waves,"
Ahust. Zh. Vol. 11, No. 3, pp. 359-362 �965! [Soviet Physics-
Acoustics, Vol. 11, No. 3, pp. 302, �966! ].

�6! N. S. Stepanov, "Interaction of Iangitudinal and Transverse Elastic
Waves," Ahust Zh., Vol, 13, No. 2, pp. 270-275 �967! [Soviet
Physics-Acoustics, Vol. 13, No. 2, pp. 230 �967!].



75

�7! A. A. Gedroits, L. K. Zarcmbo, and V. A. Krasilnilov, "Shear waves
of finite Anplitude in Polycrystals and Single Crystals of
Metals," Doklady Ozonic Nauh. SSSR., Vol. 150, No. 3, pp. 515-518
�963! [Soviet Physics-Doklady, Vol. 8, No. 5, pp. 478 �964!].

�8! Kung Flsiu-jen, L. K. Zarembo and V, A. Krasilnilov, "Nonlinear
Interaction of Elastic Waves in Solids," Ahust. Zh., Vol. 11,
No. 1, pp. 112-115 �965! [Soviet Physics-Acoustics, Vol. 11,
No. 1, pp. 89-92 �965! ] .

{29! F. R. Rollins, L. H. Taylor, and P. H. Todd, "Ultrasonic Study of
Three Fhoncm Interaction," Physical Review, Vol. 136, No. 3A,
pp. A597 �964! .

�0! Y. M. Chen, "Interaction of Longitudinal Waves with Transverse Waves
in Dispersive Nonlinear Elastic Media." Quarterly J. of Applied
Math., April, 1971, pp. 125.

�1! F. D. Murnaghan, "Finite Defozmations of an Elastic Solid ",
John Wiley & Sons, New York �951!.

�2! Flughes and Kelly, "Seccnd~r elastic deformations of solids,"
Phy. Rev. Vol. 92 , pp. 1145 �953!,



76

APPENDIX



APpm>rX A

G~' S FUNCTION FOR M!LUNL' IVlXRA!"1'I K

The Fourier Transformed inhatngeneous equation is;

8- � �! l - �! r! U  r! = � S  r! � - - � � � -  Al!~ik k 2 i
< o'T

where:

 r! = �+K  �  l-K /v, � 3 - - � - - -  A2!

This has the solution:

llcwever, if a Green's function is defined as a tensor of rank two such that:

lA r! G .  r,r'! = - � 6. 3  � '! - - � � -  A4!
xj ' q ik

then:

+, � - j!c' .!r,r'! = � � 6. a r-r'! g .  r! - - " !M!
K! ' ~ ~ 2 1k l1

0 T

from which it can be seen that:

�!U  r! = Gk.  r,r'! S.  r'! d r' � � - - �  A6!
v

and the problem reduces to one of finding the Green's function that

satisfies Eq.  A4! . 1'or simplicity, the term  - / 2 ! will be ignored.1

p C

for the present, then, ~.  A4! beccmas:

[� + K<! 3. �  l- K>fK>! 3.3 ] C'< .  r,r'! = 6 . 3 r-r'! - - - -  A7!

� �! ~ l
Uk  r! S.  r! g.  r! -- ---  A3!-�! = -l! ~

~i
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The spatial Fmrier transform pair is:

 y! = f f  r! exp  iy Il!d'r
V

 r 8!

f r! = 1/�m! ' f < y! exp -iy R!d'yi
Y

 A9!

If the divergence of F~.  A7! is taken and the resulting equation Fourier

transformed in space coordinates, the result will be:

-y'k'5 Y '~+ '-~ yiyiyk! 4 ' ='ikyi --- A10

r++~ kjG�. r,r ! = 0

Eq.  A10! can be written as:

 Q'-K'+y'! y G  y! =Y ------  All!
i k j j

fry which we conclude:

Y
v Qh!=-~ ~

k j K z
1

 A12!

Pearrangernent of Eq.  A10! will result in:

 Y + Q ! Y. G..  y! = 6..Y. - � - ~! y. y G.,  y! - � �  A13!k i ij ij i i k Kj

Y Y
 A14!

or

Yiy

Z 4  yk 4! yk- Y
 A].4b!

Substitution of Eq.  A12!

-1
equation key /y~-K2 will

k

2

G lyI =~+  ��
Yk � Q

into the above ave rmltiplicatim of the

result in:



Furthermore

Syk L Yk T'

- y,' � P!
1+1= + 1

 Y', � g! y,'-g  y',-g!

Substitution of these results into Eq.  Al4b! results in:

Y Y~i' + i k ~ 1 1

or:

Yiy. 1 Yi Y.
G  y! [~i ]ij g2 y2 +2 1' y2 K2

a,a.

~j K2 � ! AY 2 y2 3.

1

0 3. , + -+ -+

Y y'-Q

In spherical y space, the integral

+ +
R

�m! ~o
UgT

 dy,! '

This can be inverse Fourier transfornad in y space to yield:



8G

bccarcs:

21T IT  XI

l d~ dO dy [-i R cosO] sinO
�TT! ' o o o

The tesserial part can be integrated by use of real variable techniques.

r dp d0 exp[-iyR cosO] sinO dO
0 0

= 2TT g, exp[-iyR cos6] iYR sinO dHiyR
0

yR 2, 4'
0TT �YR! �  -3.yR! s~  

yR

'I'he integral  Al7! be~s:

l sin  yR!

TT2 o yR

2
y

 y2 g 2!
418!

The i»~raTad is an even function, therefore the abave is o»e half t!m

integral fran to ~. Then the integral !m~ms:

 AI9!YdY

'Ihe abave is to be integrated by using Cauchy's theoran and therefore

the contour TTTust be chosen so that a physical Grccn's function results.

Because we are interested in finding the waves that radiate away fran

the interaction volume, the terms in the Green's function must be of

the type exp  iKIR~! . The first term in Kq.  Al9! is integrated by using

the ccntcvx shown in the sketch,
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exp i K IRI!

or

exp i K �Ir-r' ~!

4m Ir-r'I

Thus tlute resulting Green's function is:

3.3. exp[i K Ir-r'I]
~3.

Z' 4m~ x-r' !

The abave can be exhaled to yield

exp[iK ]r-r'!]A A A 2, A
iG, .  r,r'! = [6..-r.r.+r.r. + r.r,

~3 ~ J ~ 3 ~" I~K ~ 3

2 ]
exp[is  Ir-r''  ]

Ir-r' ~ K' 4~!r-r' I

2A K
+[r,r. � - r.r.3 g ~2 1 j  Ml!

In order to obtain a far field approximation of the Green's function,

all quantities involving r will be expanded.

 rr'!] = [r ' r-2r r'+r' ' r']'
+

= [ r-r'!

=r[r � 2
r ~ r' r'~> 4

+  /r! ] =r l � r ' r'+----!
r

S~larly:

r'r'l l
+

Z+ +/r r'/   rr'
r

2.K ~ A
- r,r.

~r-r' !q,

]
~r-r'I'K' 4m~r-r'I



83

if we consider only the liest terms in the expansions, the far field

Green's function will be given by:

~ +, ]
G.. r,r',v! = � ..-r, r .!exp [iK ' r-r'r'!! exp [-K"  r-r'r'!ij ' j 4~p c 2z ij i j

0 T

1
A P

+ r,r. exp[iK'  r-r.r! ! exp[-K"  r-r r'! ! � � � �  A22!
4~p C 'r

0

 A23!

+ i  A24!

where:

lg
2 l + F,'u !

�+j 'e'! ~+1

1+~

'IO 2 lbj oP!

2 l + A v !

4! �+6 4! ! 1

Lo 2�+A vi!

r+ n/>
4+ 2p

~ = V/U

QQ   U/9 o!

These expressions are derived in Spadix C.

where the Green's function of Eq.  A21! was rmltiplied by and the real

and imaginary parts of the wave numtxxs were explicitly written as:
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APPENDIX B

GHEEN 'S HJNCZLCN FOR PLANE WAVE INTEPACZI N

The equation to be solved is:

W  x! U  x! = S  x!  Bl!

T?as equation has the solution:

-�!U�!   ! + -1!   ! S  x!  B2!

X  x! G  x,x'! = 6 x-x'! � � � � ��  B3!

or

G x,x'! = N  x! 0  x-x'!  B4!

then it can be seen that

U  x! = G x,x'! S  x'! dx'
x

I» this case tie linear operator is:

Z x! = ax+K
tT

-- � -- � -- � - B6!

where K, is ccmplex.
Mi T

The spatial Fcurier transform pair is:

f  y! = f  x! exp  zyx! dx

f  x! = 1/2~ f  y! exp -iyx! dy
y

 B7!

 B8!

However if a Green's function is defined in such a way that.



Transformation of Eq.  83! results in:

 -y' + K' T! G y! = exp iyx'!  B9!

Hlltiplication of Eq.  B9! by /  y y K~ ! and applying inverse
Mp

transformation results in:

[-iy x-x'! ]
dy - - - - - - -  B10!

'Ihis will be integrated by using Cauchy's residue theorem and the contours

shawn belch.

x>x x x'

T?~e result i-:

G x,x'!

 Bll!

G x,x'! = 1/2m

y

exp[i K'  x-x'! ] exp[-K."  x-x'! ] x~x'
2K T,T rT

exp[-i K'  x-x'! l exp [-K"  x-x'! ! x x'



APPENDIX C

DERIVATION OF ZK COMPLEX PROPPCAHON VECTORS

The equation to be solved is:

PoB tU.� t ~ kUi +   q -2/3q 313kUk ~ kU, +  !'+~ 3i~k k i

'The Eourier Transforrrtation Pair is:

f  u!! = 1/2e f  t! exp izt!dt  C2!

f  t! = f  ~! exp -i~t! cia  C3!

If <  t! is zero at t = + and ~, then the above equation can be

transformed to:

Bearrangerrents yields

p CPU.-[p-i~q]c .. c 3.3 U + fX+2p!-is{ g -p/3! ]a.a U = S. � � � � � {C5!
o i ijk kkrni R m ikk i

After taking the curl of the abave equation the follcazing results:

� + K ! U,2 2 l s. ------- ----  Ct!
k L i L!  A+2p � xu> g+q 3! i L!

and after taking the divergence of the equation:

k V i T! g+ ' T!  ci!

where:

BUi !=0

-p ~'u, + iz[q3' G. +  Z-2/3'!a,a U ]-pa' u.- !+q!d.B U = S, - � -  C4!
0 1 k i ikk ki ikk i



87

ijk j k L!

pO

Tne rm~der of the analysis will be devoted to fading the real and

imaginary parts of K and K . Eq.  CB! and  C9! can be arranged to yield:

2
o   1+i'!

L ~+2/  Clo!

2
o �+ivI !

�+~ 3 !
 cll!

r, +q/3

K L C  c12!

1
�+iuZ3 ! "

Zo  l~-8 !
 cl3!

where

 p~ 8
b q

I
�+ivX

 its!'A !"
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We bracketed text in the numerator of each expression for k can be

represented by:

Z ~ R exp i8!

where:

exp i8! = cos6 + i sin9

R = �+uPA}

� y  U2$2!

9 = tan A

also

cos 0 = /� +  oA! !

oos 0T = / l +  vB!~!

+ i

Frcrn which we conclude:

exp >! = [~j +f t > !iH 1+ cosB Q . 1- cos8 g

l+ -~
]

43 1 � g g!!  j�+id ~
T  l~'8'! ~ 2

l

IM+ 8 ~ ~!

2
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�+u! A ! -1

Lo 2�+v A !




