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ABSTPACT

INTERACTION OF STRESS WAVES IN A

NONLINEAR VISQOELASTIC MEDIUM

by

PETER M. VOGEL

Nonlinear interaction of monochramatic viscoelastic waves is
investigated by calculating the second order displacement field that
results when either two distinct waves interact with each other, or a
single wave interacts with itself. This is accamplished by studying two
types of interaction problems; volume interaction and the interaction of
plane waves.

Volure interaction is studied by having two viscoelastic waves
of arbitrary propagation direction and polarization interact. Neﬁct,
the problem is simplified to the elastic case and the radiated nonlinear
wave that results fram resonant interactién of the primary waves is cal-
culated for the following cases.

1) Interaction of two transverse waves for various

polarizations and propagation directions.

2) Interaction of two longitudinal waves for various

propagation directions,

3) Interaction of a longitudinal and a transverse wave for

various polarizations and propagation directions.

The interaction of colinearally propagating viscoelastic plane
waves 1s cansidered next. The second order wave resulting when two mono-

chromatic primary waves interact, is calculated for the following cases.

vi



l} Interaction of distinet transverse waves for various

polarizations.

2) Interaction of distinct longitudinal waves.

3) Interaction of a transverse and a longitudinal wave.

4) Self-interaction of a transversc wave.

5) Sclf-interaction of a longitudinal wave,

In addition, a thorough development of the nonlinecar equations that govern
the displacement field is presented as well as an explanation of the
mechanisms through which the nonlinearities arise.

The conclusion contains a listing of all of the nonlinear waves
that result for the varicus interaction cases, as well as a descripticon
of an experiment designed to cbserve the nonlinear wave and measure the
parameters necessary to calculate the nonlinear elastic constants. Also,

some preliminary experimental cbservations are reported.

vii



CGIAPIER I
INTRODUCTION

The entire theory of linear elastic {(or viscoelastic) wave propa-
gation is based on Hooke's law and the linearized strain tensor. The
most characteristic property of these linear elastic waves is that any
wave can be obtained by simple superposition of separate monochromatic
waves. Each of these waves propagates independently of the others without
regard to its polarization. Thus one says that these waves do not interact.
However, Hooke's law and the linearized strain tensor are only approxima-
tions and in certain instances do not appropriately describe the nature
of the medium. These instances are the cases of large amplitude waves
and an inherently nonlinear medium. Consequently, nonlinear equations
must be derived in order to model the characteristics of wave propagation
for these cases.

Because the equation of motion for the wave is nonlinear, simple
periodic selutions are no longer admissable and the nonlinear interacticn
of waves must be considered. The anharmonic solutions of the nonlinear
equation of motion and the polarization analysis for the interaction of
large amplitude viscoelastic waves propagating in a nonlinear medium will
be considered in this thesis,

The anharmonic effects of wave propagation in solids are not
unlike those of other dynamic problems and are very similar to those
effects in wave propagation problems of acoustics and electrodynamics.

In general the nonlinear contributions are small when compared to the
linear effects except for the cases of large dynamic motions and para-
metric resonance. lherefore, in this thesis, emphasis will be placed on

these two conditions,



(HAPIER II
HISTORICAL DEVELOPMENTS

The anharmonic effects of wave propagation in a continuum can be
predicted from the field equations of continumm mechanics, since in
general all constitutive relations are nonlinear. The first quantitative
detection of these anharmonic effects occurred in acoustics and was
published by A, L. Thuras et al (1) in 1934. It was noticed that frequency
doubling occurred when an intense sound wave propagated in the atmosphere,
Although analysis was presented, the nonlinear equations. of acoustics
were finally formulated by M. J. Lighthill (2) and these equations were
used extensively to solve a variety of problems. A very selective list
of some of the work in nonlinear acoustics is listed in references 3 to
15. Nonlinear interaction and the anharmonic effects of electramagnetic
and plasma waves have also been investigated by R, Y. Chiao, E. Garmire,
and C, li. Towmes (16), A. Yildiz {17) (respectively) as well as others,

The anharmonic effects of elastic wave propagation has been
investigated both theoretically and experimentally. Theoretical analysis
was initiated by Landau and Lifshitz (18), who showed how the nonlinear
equation of motion could be derived and discussed the results of inter-
action of waves. Subsequently Z. A, Goldberg's work (19) in 1960 kindled
a new interest in the problem, In his paper, he showed that a second
order lengitudinal wave was generated when a transverse or a longitudinal
primary wave propagated in an elastic nedia. Shortly thereafter, Jones
and Kobett (20) investigated the interacticn of two distinct waves of
either polarization (lmgitudinal or transverse) propagating in various
directions. This was accawplished by solving the inhamogenious vector

equation of motion by using a tensor valued Green's function. The work



of Jones and Kobett remains the significant theoretical basis for much of
the subsequent work in the field although several deficiencies mar their
work. First, therg is a term deleted in an important result, Second,
the Green's function is dbscure in origin. Third, the discussion of
quantun mechanical results contradicts the results found by using classical
mechanics and this discrepancy is not resolved.

The work of Jones and Kobett was redone by Childress and liambrich
(21) in 1964. In this case the authors used the "wave packet" formalism,
The problem was also solved by using quantum mechanics exclusively by
Taylor and Rollins (22). while the volume interaction work of Jones and
Kobett was 'being studied in the American school, the plane wave interaction
work of Goldberg was being extended in the Soviet school. Papers published
in the early 1960's by Gedroits and Kroselnokov (23), Viktorov (24) ’
Pospilov (25), and Stepanov (26) were devoted to the same problem Goldberg
studied. However, it is felt that none of the above menticned .authors
shared the insight that Goldberg had of the problem. Gedroits et al
performed laboratory experiments which were later published (27). Viktorov
discussed the effects of boundaries on the interaction phenomenon and he
also explained the phenanenon by investigating the nonlinear stress
tensor. Pospilov discussed the viscoelastic case; however, he did not
solve the problem in general. Stepanov showed some results that are
ocontrary to all previous work and the method used to cbtain them, makes
them uncanvincing. In addition to the above mentioned experimental work
by Gedroits et al, dbservation of nonlinear waves have been reported by
Kung-lisin Jen, L. K. Zarembo and V. A. Krasilnekov (28) and F, R. Rollins
et al (29} in laboratory experiments. Although both experiments were
well done, the only conclusion to be drawn from either is that observation

of nonlinear waves in solids is possible. Recently there was an attempt



by ¥. M. Chen (30) to investigate the interaction of viscoelastic waves;
however, he neglects various polarizations and types of wave interactions
adding little insight to the theory.

Thus cne cbserves that the anharronic effects of elastic waves
has been ccns_idered both from a classical mechanics and quantum mechanics
points of view; however, at no time has the entire problem been formuilated
in a unified manner. Furthermore dissipation of the waves has not been
adequately oonsidered. It is particularly important to incorporate
attenuation into the model for two reasons.

1) dissipétion is a physical part of all wave propagation

phenomena

2) the problem of resonant interaction of waves cannot

be cormpleted unless internal damping is introduced,
These two points will be further amplified in the subsequent sections of
this thesis.

The author in this thesis has attempted a unified and general
formulation of the prablem. A camplete sticly of the problem will help
design experiments to determine the nonlinear élastic constants that are
a vital part of the quantitative understanding of nonlinear wave propaga— |
tion. Completion of the experiment is beyond the scope of this work;

however, the design of an initial experiment and some results are presented.



CHAPTER 111
FORMULRTTON OF TIHE PROBLIEM

1}  Thermodynamic Aspects of Wave Propagation.

In general, the equation of motion for elastic waves can be
derived by writing Newton's Second Law and the constitutive cquation and
a brief explanation of the thermodynamic process. However, this is not
the case when considering wave propagation in a nonlinear viscoelastic
medium. Derivation of the equation of motion must be accomplished by
using the most basic approach. In this section an equation of motion that
governs the prepagation of elastic waves in a nonlinearly elastic, linearly
viscaus solid medium will be derived. To this end, the thermodynamics
of the deformation process will be considered and the appropriate can-
stitutive equation will be derived. The first law of thermodynamics
states that the difference between the heat aoquired by a unit volume
of material and the work done by the internal stresses in that volune
is equal to the change in internal energy. For a reversible process,
the heat change is given by T dS where T is the temperature and S is the
entropy. Thus the first law can be written as:

d€ =TdS-GR == === - = o oo = = - (1)
Here £ is the internal energy density and R is the work density. The
frec energy density % is given by:

LR R e (2)
Thus :

A¥= AR - SAT == == == =~ = = = = = (3)
The thermodynamics that governs the deformation process of the wave
propagation must be determined. Elastic, (not visooelastic) waves can

be characterized as adiabatic deformations., In this case, it is argued,



that tenperature changes due to defcmmations cause only negligible quantities
of heat transfer due to the rapidity of these tenperature fluctuations and
the fact that the temperature gradients occur as often in one direction as

in the other., In this case

or for an elastic medium
S = constant

We therefore conclude that the thermodynamic process that characterizes elastic
wave propagation is an adiabatic-isentropic process and the elastic constants )
and k are assumed to be the adiabatic constants. The Lame parameter, y , is
independent of the thermodynamic processes because it is only associated with
deformations that do not involve volume changes. The deformation process of
visceelastic waves cannot be characterized as adiabatic because it must involve
mechanical energy dissipation and thus energy loss, Ilowever, if the assumption
is macie that the mechanical energy dissipation (which must result in the
increased internal ecnergy of the medium) results for a reasonably short

periods of time, only a negligible temperature rise will result. Hence, visco~
clastic waves may be characterized as approximately isothermal. In this case
the constants A and ¢ are referred to as the isothermal moduli. It is because
there is no physical defarmation that does not dissipate energy and because
viscoelastic waves will be a major part of the following work, hereafter the
constants A and k will be assumed to be the isothermal moduli and the defor-
mation process of viscoelastic wave propagation will be assumed to be an iso~

thermal one.

2} Inergy Concepts in Wave Propagation

In order to provide a basis for the nonlinear-viscoelastic



fornulation, the familiar linear clasticity will be investigated. The

torce [I-‘i) due to the internal elastic stresses can 1w written as:

where 0, . 1s the stress tensor. Then it can be shown that the work density
can be written as:

R=1/2 Yiartikém @~ - " "~ {5}

where 4 is the constitutive tensor of Hooke's law and & ik is the linear
strain tensor. By substituting the expression for work as expressed in
e. (5) into eq. (1), it follows that for an adiabatic process:

a(‘ik) (&) s|5=y.] R

Similarly when working with nonlinear elasticity, the stress tensor will

be obtained by taking the partial derivative of energy with respect to
camponents of the strain tensor, Again this energy will be the total
internal cnergy for an adiabatic process or the free eneryy for an iso-
thermal process. The crucial difference for nonlinear elasticity is that
the strain tensor now contains the second order term amué anUe which was
previously neglected. So in nonlinear analysis one assumes that the seccnd
order terms are significant either because of large deformaticns or because
the deformations take place in an inherently nonlinear material. To con—
struct a nonlinear model one first expands the internal (or free) energy
in secand and third order powers of the strain tensor for which an invariant

{scalar) term can be formed. For an isotropic material, the eneryy becaues:

i \ A
Elox ) =ucy +he e+ e e e
C ey _ oL ___
+B€ik Ej_ksee + k3 Eee (7

The above expansion can be made by observing that the strain tensor is
symetric and that each term must be a scalar. llowever, the coefficients

were chosen so that the first two terms would yield liooke's law when



considercd alone and the last three terms would be identical to the results
obtained by Mumnaghan (31), This expansion was first considered by
Murnaghan (who did not use tensor notation) in 1936 and the use of the
above is sometimes referred to as Mumaghan's five constant isotropic
elasticity.

The internal (or free) energy can be cast into the form:

€lor¥) = oo Cik g ~ """ "~ --~-- {8)

where the fourth order tensor is as follows:

B'] =Yy + A3 Ere ﬁj_maem"'BEie Sim 6km

c
T e Sk Oy Tt - - - (9a)
and where i) is the constitutive tensor of Hocke's laws:

Yikom = A ((Si_k ém} + U (Gi_n ka + Gi.m 6kn) ------- (9b)

Because the argurent of seocond order smallness is no longer valid, one
must consider all the terms in the strain tensor.

€k = 1/2 (aiUk + akUi + ai Ue dJ
Substitution of this strain tensor into the cxpression for the energy
density yields:

i 2 . 2
BlorF) = uya (3,U; + 2,00 + (1/2) (3,U)

+ s M) B 3.0, QU+ (A2 /) ) (3,07

+ /12 3,0y 30, 3, U +B/23, U 3, U 3 U

3
+¢/3 B U mm e m e e oo (11)

where terms up to and including third order terms in displacement are
rctained and all high order terms are neglected.

The form that the stress tensor takes when nonlinear effects are
cansidered can now be derived. For isothermal deformations:

“OR=6F ==~ - oo o — -~ - (12)



in vrder to take the variation of the free energy, it is only necessary to

note that it is a function of the displacement gradient, (BkUi) . Then:

§ (F) =3 () 8 (3,U0,) = 9, [2 (F) 8U.] - 3U,3, [9 (F) 1

(BkUi) k-1 k (akUi) i ik (akUi) (13)
Substituting Eq. (13) into Eq. (12) and into the definition of work
density:

f § RAV = f F, 6U v (14)
and noting that Fi = akc ., and by equating the coefficients of (SUi, one
concludes that for an infinite medium: |

O = a(akUi) (F) {l4a)
More explicitly the stress tensor is found to be:

Oy = u(BkUi + BiUk) + A ane dik

+

(u+n/4) [akue aiue +2 aeue akui]

+

2
(A2 + B/2) [(amUnJ 6ki + 2 ane akUi]

+

A/lz[(aeuk)(aiue) + (akUe aiUe) + aeuk ani}

' 2
+ B/2[6 ane U, +3U 3 U &§.1+ c[ane] & {15)

k71 mn nm ik ik
Examinaticn of some of the ternns will show that unlike the linear stress
tensor, this stress tensor is unsymmetric. In the above, anly the reversible
energy density or the purely elastic energy density has been considered. A
perfectly reversible process rarely exists in the physical world and it never
exists for a stress wave, Therefore dissipation of the wave must be con-
sidered.

The thermodynamic process, characterizing the propagation of a
viscoelastic wave, has been considered in a previous section and found to

be an isothermal process,
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In this case, the finite velocity, internal motion of the deformation
process causes dissipation of the energy because of the internal frictieon
{or viscosity) of the medium,

Here, the dissipation of energy will be incorporated into the analysis
by oonstructing a dissipative function fraw which the nan-conservative forces
and the dissipative stress tensor can be derived. The introduction of
attenuation into. the model will be accamplished following the: methais developed
by Landau and Lifshitz (Ref. 18, Art. 34).

If one has a mechanical system whose motion involves the dissipa-
tion of energy, this motion can be described by the ordinary equations of
motion, with the forces acting on the system augmented by the dissipative
forces or frictional forces, which are linear functions of velocity. These
forces can be written as the velocity derivatives of a certain quadratic
function ¥ of the velocities, and this function is called the dissipative
function. The frictional force, fa, corresponding to a generalized coordinate,

q,r of the systan is then given by:

Because Y is a function of q,, me writes
S¢y=5_ (4 &g, =~ fatSqa {16)
or for a continuum:

§ f yav = I fi 6Uidv (17)

v v
where ¢ is the dissipative function density.

Because the forces due to dissipation are zero during simple trans-
laticnal or rotational motion of the deformed body, the dissipation function

density must be zero when either Ui = constant, or when Ui = Cijkrjgk .
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the first of these conditions requires that the dissipative function
density must not be a function of the particle velocity but rather a
function of its gradient. The second condition requires that the dissipa-
tive function ¢ be only a function of the symmetric parts of the velocity

gradient. That is:

whore €15 is the rate of strain tensor.

- - l L] »
€Sk =¥ (BiUk + BkUi) (19)
It the dissipative function is constructed in such a way that the dissipa-

tive stress that is derived from it has a traceless term, (which has as

its coefficient n), the function will take the form:

X U S L 1 O L (20)

This can be written in the more convenient form:

b=nE gl @2 €% - - e o (20a)

The dissipative stress tensor (o'ki) can be found in a way analogous to

»
that of finding the linear stress tensor., We know that:

fo=d 00 mo----- o= (21)
and that:
-8 fYpdv=~-f fi éuidv = /[ akaki <SUidV ———————— (22)
Howcver,
ot . . 1 . N L
S () = 8cik(tb) 6 (c.lk) = aaikw)?(aiéuk + akSUi) (23)

The rate of strain tensor is symmetric and thercfore:

Sy = Bcik{lp) Bk 6Ui = ak(aaﬂ{w)) 6Ui - Bk(aeik(w) 6Ui) - (24)
Conbination of Eqs. (22) and (24) will yield the following for an infinite
madia,

D= oA ez -2%n) & . m e
O = Bgik(w) = (& = 3n) g0 + 2ney, (25)
Substitution of the rate of strain tensor into Eq. (25) will yield:

) _ _ 2 . - 'ty - o o o o
Oy = (¢ T n) (ane}sik + r]{i)iUk + BkUi) {26}
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It is no coincidence that the dissipative stress tensor resembles the
elastic stress tensor for an isotropic media. The dissipative function

can be put in the form:

l . .
V= s e ik S - - T T T T oo (27)

where 5 is similar to the fourth order tensor of llocke's law and is
called the viscosity tensor, For an isotropic medium this tensor can be

reduced to

My = (&= 97 65 6+ 06,8 +8 & ) - === - - (28)
Unlike the elastic stress tensor, the viscous stress tensor contains no
nonlinear terms with respect to the displacement. In formulating this
stress tensor it was assumed that the dissipative forces were exclusively
a function of thé linear velocity. Thus viscosity is only a first order
phenomenaon. The only energy left to consider before the equation of motion
can be derived is the Kinetic Energy density, which is simply given by:

T=0, Ul =mmmmmmmm-emoo-- (29)

for a solid of density o

3) Equation of motion for waves in a nonlinear viscoelastic

The equation of motion can now be derived by using Hamilton's
principle:

= z eﬂ - o e e . T R )
§I=2¢ fl i dx.kdt 0 (30)

where points 1 andl 2 are points in time where the variation of the dis-
placement is zero, and V is a volume that is enclosed by a surface on
which the variation of the displacerment is zero. For this problom the
Legrangian density takes the form:

£ =TWO) -V U, 30) --------- (31)
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Where V is the potential energy density and is equal to the sum of the

reversible and irreversible parts,

V= ?rev lUk) + ?IRR -------------- (32}

The reversible part is the free energy as expressed in Eq. (11) and the
irreversible part %’IRR takes into acoount the effect due to dissipation.
Substitution of the Lagrangian density into Hamilton's principle results
in:

2 - - [ - —_— - -
f; itemui)) (T (3 u;)) laxdt - f A ¥ X at = o (33)

The conservative part of the above equation can be integrated in the usual
way :

2 ) =
ST ) =T 30 1an e =
s i {a(ﬁi,(%’(ui))aui—awkui) (¥ )6 u)]laxdt - - - - (33a)

where each part is integrated by parts.
o

240 _r2 .
I a(U)(?)éU dxkdt-fa(u)(?')ﬁui | 2, - fata(U)("S’)SUi dtdx,

rrs (% )5(3,U,) dx dt = f 3 (% )su, | at -
Ly JaU) kYi) dx v 2 auy) il

J f1 aka(a U, )(? T L (34)

The first terms in the above expressions are zero sinze 6Ui does not vary
at the end points. Next the irreversible part of the potential energy
mist be integrated. One notes that variation of potential enerqgy is tne
variation of work,

2 2
‘J; [, $Vrprixdt = {’ J‘l F; $Udgdt =~ -=---=--=----- (35)

The force in this case has been shown to be the gradient of the dissipative
stress tensor, and therefore the integral on the right becomes:

2 ]
‘f’ fl ak"ki 6Ui dxkdt
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or:
i Iz
3, o, (v) SU,dx dt
v 1 k (Ei_k) ld)ﬁ{
Hence, the entire equation of motion can be written as:

3,0 o (%)~ aka(a U, )(35") =330 ) =0 meem o (36)

(Ekl

After supstitution and rearrangement, the equation of motion takes the
form: |

2 - 2 2 = - -
P U =9 N5, U + (T - —n)a 19U~ ot U -+ )9 8 U = 5, (r,t) (37)

where the source term contains all of the nanlinear terms and is:

Ud U, + 23,9 U.3.0])

Si(r,tJ—(U+A/4)[akueaiue+akeei kleike

+ [ A+ u+ A4 + B) (2. akuaku +aakukaul

2
+ (A+DB) 9 kUlB Ue + (B + 2C) BlBkUkane

+(A/4+B)[88U]\3U +alakuaul ------------- (38)

Before discussing the solution to Eq. {(37), it may be instructive to
restate the mcxlel-f.hat this equation is intended to represent. This
equation is intended to govern the propagation of waves in a linearly
viscous, nonlinearly clastic solid medium. The moduli that campose the
cocfficients of the displacoment terms are the isothermal moduli and thus
the deformation process modeled is an isothermal onc.,

In order to derive this equation, the clastic free energy was
expanded to sufficiently high corders in the strain tensor so that all
the second order terms in displacement would be retained in the equation
of motion. 1In addition second order terms were also incorporated into
the strain tensor. Therefore the above equation of motion has incorporated
into it the effects of two types of second order nonlinearities:

1) Anharmonic effects may arise due to the nonlinearity of the

medium in which the wave 1s propagating. The model considers this by
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including higher order terms in the enerqy expansion. A highly nonlinear
material would have large numerical values for the constants A, B, ad C,
and a very linear material would have A = B = C = 0. By the way the
values A, B, and C are in general negative (B is positive for metals)

and they are approximately an order of magnitude smaller than the iso-
thermal first order moduli for polymers and of the order or one order
larger in value for metals and several orders larger than the linear
moduli for some crystals, This will be discussed in more detail later.

2) The second type of anharmonic effect is ane that arises from
large deformations. The model takes this into account by including higher
order terms in the energy expansion and by not discarding the second
order term in the strain tensor. The relative importance of these two
effects will vary considerably with the type of material, and the effect
of nonlinearities in general will be very much dependent on the amplitude
of the wave. A numerical example will illustrate this point. The maximm
stresses due to a one dimensional longitudinal elastic wave propagating
in a medium of polystyrene will be calculated, Polystyrene was chosen for
two reasons. It is easy to excite a large amplitude wave in this material
because of its low density and secondly the second order elastic constants

have been camputed for this material (32).

» = 2.89 x 1010 dyn/cm’
b= 1.38 x 10°° "
A =~1.00 x 10+t "
B=-8.3 x 1090 :
C = ~1.06 x 101! "

o= 1,05 gn/an’
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The maximum stress due to the various deformations of a 10K cycle/sec
longitudinal wave with amplitude of 5x10'9 cm propagating in the above
material are as follows:

Linear stress = 7.15 dyne/cm’

Nonlinear stress with (A=B=C=0) = 1.4 x l{}—? dyne/c:m2

Nonlinear stress due to terms whose coefficient is

A, B, or C=4,24 x lO-5 dyne/c:m2

These stresses werce calculated by using Dg. (15). If a wave of the same
frequency but with amplitude of 5x10™4 c:ﬁ were propagating in the same

3 dyne/cm2 , and

material, the stresses would be '7.15}{104 dyne/anz, 1,4x10
4.24x105 dyne/cm2 respectively,

It can be seen fram this that by increasing the magnitude of the
wave by an order of 5, the nature of the stresses is campletely changed.

If the nonlinear stresses were not significant in the first example, they

are very mch significant in the second exanple where the oscillations
are well into the nonlinear region. It is interesting to note that
polysiyrene is not by any means a particularly nonlinear material (some
m:tals and crystals are several orders of magnitude more nonlinear) and
even in the laboratory a wave with-an amplitude of 5 x 1074 & can be
generated by using quartz crystals excited by sufficiently high voltages,
In addition to high amplitude waves, there is one other instance when
nonlinear oscillations become predaminant, and that is the case of
resonance, which will be discussed later. The effect of the nonlinear
deformation, whether it is due to large deformations or a predaninantly
nonlinear material, will be the same and that is the creation of a second
order wave that is not the result of superposition.
4) The Perturbation Technique

The anly variable in the equation of motion, kEq. (37}, is the ig

camonent of the displacement vector and it appears as a linear term on
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the left side of the equation and as a second order term on the right hand
side. ‘The solution to this equation can be obtained by perturbing the
variable Ui' in which case the solution of the equation is the sum of the
solutions to N distinct equations:

u. (;ft) = cf U(N> . (;,t] ———————————— {39)
L 1

N=0
The N=' term of the variable, U is the solution to the Nth order equation

of mcotion:

(N) (N) >

-
Llr, 00, 7 (r,8) =8,
where #£(r,t) is the linear operator:

"' = 2. 2 _ _2 .
L(r,t) = p 3%t = nd 3% (c - 588,98,

2 - — — — - — — - — —
and Si( )(‘r,t) is the source term:

N-1

s, M 20 = D (et A4 (a2 N Pau B 4 g2 9 B34 y O
J=1
+ 2200 N g 9
v O e a2+ 1) 0,00 N 5 04 5 g B3y y O
+ { A+ B) (32kUi(N—j)ane(j)} + (B + 20) (aiakuk(n-j)aeue(j))
+ (A4 + B) (aeakuk(“'j’aiue(j’ R R D e (42)

The N = 0 equation corresponds to rigid body motion and is therefore of
(o)

no interest (U i = canstant) . When N = 1 is substituted into EBq. {(40),

the hamogeneous equation results.
(1}

Lir,e) v,
i
The solution to this equation will be discussed for the appropriate cases;
however, at this time it will be stated that the solution consists of
dilitational or langitudinal displacement fields and deviatoric or trans-

verse displacement fields. These fields are characterized by:
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. - > _
div (UL) l,’JL curl (UL) = (

div () =0 curl (G = ¥,

The waves represented by the solution of the linear equation propagate
independent of each other, and because the interaction or self interaction
of these waves will be investigated; henceforth, these linear waves will
be referred to as the primary waves. The N = 2 order equation is the
lowest that results in an inhomogeneous equation, the source term consist-
ing of second order cambinations of the primary waves. It is for this

reason that we say the N = 2 order is the lowest that results in an

interaction. Because

Ui(N + 1) ()< < yN

RS
one can conclude that for all practical purposes, the displacement field
is given by a finite sum of the Nt—'h— order displacements. In fact, only
the second order displacements (and of course the primary waves) have
been observed in the crude laboratory experiments campleted thus far,
In addition to finding the nonlinear contribution to the displacement field,
calculation of the N=2 order displacement is inportant because doing so
qivés insight into the physics of wave interaction,

ihe equation of motion was derived in such a way that the dis- |
placement terms of higher order than 2 were disregarded, If the free
energy density were expanded further' in powers of the strain tensor, and
if the appropriate higher order termé were retained in the ecquation of
motion, pe-rturbation of the variable wauld have allowed calculation of
displaccments higher than secand order. As menticned before these higher
order displacaments becawe increasingly smaller in magnitude and importance.

For instance the N = 3 order wave will be duec to either interaction of a

primary wave with a second order wave or third order primary wave
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interaction. The N = 4 wave will be due to either interaction of two
second order waves, o third order wave and a primary wave, or fourth
order primary wave interaction. The types of interaction are easily seen
by investigating the source term S; (M) . 'This thesis is concerned with
only the second order interaction and accordingly only secand order terms
are included in the source term. f1hese terms are of the form:

N L)
J

Substitution of N

il

1 into the above summaticon will yield zero, however

substitution of N

2 will vield a combination of two primary waves as
the source term. lience we are considering primary wave interactions,
If terms of the third order were considered, the source term

would be of the form:

N=-1 N-K-1 .
K. J

arxl if the fourth order terms were considered, the form of the source
term would be:
N=1 N=L~1 N=K-L-1

Z b3 L
L K J

A(N—K-L-J) BL CK ﬁJ

In this manner any order of nonlinearity can be considered, however,
consideration of the «mount of algebra necessary to camplete the analysis
make such calculations impractical. Also there is little experimental

evidence of the existence of interaction waves of higher order.



QHAPTER IV
VOLUME INITERARCTIONS OF ELASTIC WAVES

First the interaction of stress waves in three dimensional space
will be modeled. A three dimensional model is especially useful when
two primary waves cross each other. The volume of interaction is then
approximately spherical and this volume bchaves as a spherical radiator
of interaction waves. In the case of self interaction it is assumed that
a wave crosses a spherical nonlinear element and the self interaction
occurs. The spherical nonlinear element then serves as a radiator of

interaction waves.

1) The Primary Wave,
As mentioned previously, the Primary Waves will be represented by

the real part of the solution of the linear equation (N = 1):
L(r,b) Ui(l) (F,8) = 0 = = = = = o = = — — (1)

The next step is to Fourier time transform this equation; however, before
duing so, the Fourier transformation pairs for both time and space trans-

formation will be listed. The transformation paii‘s are:

B0 - = _Z £(Z,6) explint)dt = = = = = = = = (2a)

CE(E,t) = _Z E() expl-iwt)de === - = = = = (2b)

EY) = J £ expliy * DAV = - e - - - - (2¢)
v

£() = 1/(2m? [ B exp(-iy * Dd’y - - - ~ (2d)

Y
Er;. (1), after Fourier transformation and rearrangement, can be written

in voctor notation as:

20



%‘”.2 G(l) (r) -~ (u- iwn) VxVxG(l) (r)

+{A+ 20) - iwl{g + n/3) WV

. G(l})

=0

By letting the displacoment vector be represented by the sum of a longi-

-

-

tudinal displacement GL(;) and a transverse displacement GT(E) , and by

noting the properties of these displacements as listed in the last sec-

tion, the equation can be separated into two vectoxr Helmholtz equations:

-

(Vv + K - K) T®
(V-9 + Ky, - Ky T,

where the nagnitude of the propagation

+

real and imaginary parts:

It
o

- e mm mm am B wm e omm -

]
<

— e e et wm wm wm A A

|KL| = IK['_,l + .L|I<.£| ————————————— (6)
IKIJ = |Ry| + |KE.[ ------------- (7)
2] = U R (8)
Co | 20140239
PO w?BH %y 122 (9)
“ro | 2140?82
| = - ROV (10)
%o L 201 + R2u?)
o = o (@eBO a2 (11)
“r “ro (1 + B2w?)
1/2
- (Ar2ut L 12
CLO ( po ) (12)
Cro = { u/oo)l/z ------------- (13)
Y L+ n/3 el _.
A= == -~ - (14)
B=nl 0 e e e e e mm .o (15)
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The primary waves can be represented as the inverse time transform of the
real part of the s-lution to the linear equation, or for this problem,
the primary displacement field will be the sum of two waves:

(1)

i

-

U ;) cos(mqt—ﬁ' . ;)

Wot) = By oy (K (<)

+ Ai(B}exp(-KTB}' r) (cos wBt-KEB)' ry ------ (16)

The primary displacement field is written in this manner because we are
interested in the interaction of two distinct waves. In the above
equation Ai(a)' Ai(B) are the polarization vectors and the subscripts
« and B are intended to only identify the waves and they are in no way
related to the A and B of Egs. (14) and (15).

Substitution of the primary wave into the source term given by
Eq. (42) of Section III, results in the following expressicn if the self

interaction terms are disregarded.

(2) > _ (2) . Fy o, oy . 2
;7 (x,t) —xiﬁ{ Vi(ﬂtB)Sln[(wﬁin)t - (K! = KB) r]

{2)

$ (ot ") ¥l - - - (17)

B

+ W cos [(mmzmﬁ)t-.-(i(";c + i')-;]}exp[—(](;-]-}(

8
kWhere the vector nature of the source term is given by:

V?z) = -
1

N

Cut DAY [OY; 2 5v5) + (gvy = ovg) + 2 (gyy ¢ 1573)]

+ ( A+ B) “2171 4 2271)] + (B + 20) [3371-_ s 3471]

+

(B4 + B) [lgy; * 56¥3) + oYy * 5pvy) 1} == - - == (18a)

WFz}

li

1 - +
+ (A+u+ A4+ B) [{joy; ¢ 1675 * (Lovy 2071

+

A4+ B) Ty 2 9gvy) + {575 = 35701}
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the \f vectors are as follows:
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K R @Ry- By gy + Ry RO By A
+ (ﬁg- x-)(ié A) A, i (K - k“enk’g- A A (g)
(A, Ry K- K kY o = R R &y R K (g)
B Ry R kL, - R R &L R .11(«)
R, Rg) Ry Ky Ky () - B By KU Ky ®! )
- R R Ry R Ky - Ry Ry g R Ky (g,
((Kp Ky Ky, - Kyt K Ky o)+ (Rpe R K o)
- B KD Ky 1R By
(R" Kp) K o * (Ri* KD K o+ (K- R)) i)
+ (Ree R Ky Ry R
(R R Ky K Ay o0 = Ge B Ra KD A,
- B Ry K R oA+ G R & R Ay g
B B) R R 2y ) = B KD K2 KD 2y,
- Ry R @&y Ky oAy )+ Ryt Ry (3 KD A )
R R Ry Ry Ay - R RO R R oAy o
+ (g Kigy) Bye KD 2y ) = Ry” Rp &yr R 2y
(R KD @R Ay + B RDRL KD A g
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2y R Gy By
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savs = Byt Ky (R R g = By R dis KD xy

- B KD R K Ky, + R KD @ &)
sars = Gyt K G R ki) - By B &0 R xy g

- B KD G By Ky ) + R R Ry
35 = Bt R0 Gy Ry g - G R0y B k)
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+ R RO AR Ky o0+ R R A0 RD
2)  The Second Order Wave
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R{ ()

Kll

1 (B)

K{ (=)

Xi @)

K

The second order displacement field can be calculated by using

the appropriate Green's function.

transformed and rearranged as follows:

i (2) -
{(32}:+I\,§,)6. - {1~ KT/KI)B N (¥) = -

1 S.(z)
1

(1)

-

0%

Wnore K'l" KL and CT have both real and imaginary parts.

The equation to be solved can be Fourier

(19}

If a tensor valued

Green's function is defined in such a way that it satisfies the following

equation:
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(6% + K 85, = (1 - K/K[)D; 3,16, 4 (F3F0p0) = - — 5., SEE - - (20

r
PoCr

then the displacanent field will be given by:
o @ - / Gy it i) ST ENAF - e e e oo (21)

The tensor valucd Green's function is derived in the appendix and is:

. - +_+'
—_ 1 _ aiak‘ oxp (J.KTIr r'l)

R =

exp (—K.'._;.|;-"f"|)

. - >,
1 93  ep(r|r-r'|)
+ 2 ( 2 ) L
4mp G Kq fr-r'|

The use of the Green's function as expressed above would be pronibitively

exp (-KE|E-§'|) - - - - (22)

difficult because of the amount of algebra necessary to camplete the
prablem; however, the far field approximation of this Green's functicn is
relatively easy to use. This Green's function is then valid for the
radiation zone and thus for the remainder of this section, we will be
investigating the radiated waves due to interaction.

The far field Green's function is:

Gy (FiF 50 = 4___1:_2_. (6, = 8,8 Yexwp [iK} (r-2*T') Jexp (=K (r-£7r") ]
ﬂpoqrr
v L (2.8 e [iK] (r-27F') lexpl=K! (-2 2*) ] = = - - (23)
41100(‘{1:

After substitution of the Fourier transformed source term into Eg. (21),
and performing the operations indicated by the Green's function of Eq.
(23} and inverse time transformation of the result, the solution to the

inhanogeneous equation can be found to be:
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The second order displacement can be thought of as the real part of the
above expression. Although Eq. (24) does not explicitly express the
second order displacement, investigation of this expression will show
several of the interesting characteristics of the displacement. First

the functional dependence of the displacement of the wave is of the form:

sin i sinh K" ]}

[(m +mB}t (K(u:+8)) r) H cosh { («+8)

r

This is a radiated wave of frequency (w_*w.} propagating with the speed

B
w +wB
Cioipy = mr— and attenuating at the rate of KY | The first and
() h(ﬂ*d) (x28) "

third tem in Eq. (24) are transverse waves and the second and fourth
terms are longitudinal waves, Also notice that for a given interaction
mode, the first two terms will increase (or decrcase) the specbrum and
the last two terms will decrease (or increasc) the spectrum respectively,
In t'it.?racral, all of the temms will have significant results for both normal
nmode interactions [‘*’o:iws] and flipped moxie interactions (‘”m_‘”g) . The
polarization of the sccond order wave is determined by the projection
operators, These vectors do not have unit magnitude and thercfore will
contribute to the amplitude of the wave for a given node. The amplitude
of the wave is also very much dependent on the voluw: of the integration.
For instance consider the following,

JoS SN '
W
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This integration is the most physical part of the calculation and it
is also the most difficult. The volume V' is the interaction volume
of the primary waves, hence, this section is appropriately named "volume
interaction of Viscoelastic Waves". Because it is extremely difficult
to integrate this term, the entire problem is avoided by considering
resonant interaction of the waves. For resonance, we have

M = 18] =0
for sare specific case and the entire integral expression reduces to
V'. Although the analysis is simplified in cases of resonance, the
solution is still not very physical because one is left with the problem
of specifying the interaction volume V', It is because the Green's
function was formulated in spherical geametry that we say V' must be a

sphere but the question remains as to the size of that sphere.

3) Resonant Interaction of Elastic Waves

The unphysicalness of this problem and the amcunt of algebra
invelved precludes the solution of volume interaction of viscoelastic
waves at this time; however, the volume interaction of purely elastic
waves will be carried to its conclusion. This will give an indication
of the type of analysis that needs to be dane and the results that can
he expected.

The above mentioned equations can be simplificd to the elastic
casc by letting K"I",L = 0, In this case the solution to the inhonogencous
equation becames the displacement because no imaginary terms remain.

This sccaond order displacement takes the following form:
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As montioned before, if r is such that the ccefficient of r' is £0ro,
the volume integration of Eq. (25a) would reduce to the volume of inter-
action rultiplicd by a harmonic term. If r = §5 meets this condition
and the wave gencrated is due to resonant interaction of the primary
waves. lHere the conditions for resonance will be investigated and the
radiated wave for three types of interaction will be studied. The three

types of interaction to be studied are:
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1. interaction of two distinct transverse waves (T - 7T)

2. interaction of two distinct longitudinal waves (L - L)

3. interaction of a longitudinal and a transverse wave (L - 1T).

For distinct waves the resonance conditions for the two expres—
sions in the displacemont equation are:

wxiwf
{2+3) LONGITUDINAL >

(x+8) TRANSVERSE

By squaring the above conditions and by denoting the angle between ﬁﬁ
and ﬁg as y, one can cbtain the constraints on ¢ {(or cosy) for resonance
to occur. Because, -Dxcosy>l, limits can be established for the fre-
quencies of the primary waves. The frequency limits, cos , and direction
of radiation causcd by resanance are tabulated for (T - T), {L - L) and
(L - T) interaction in Tables 1, 2, and 3.

The individual types of interaction will next be cansidered

a) Transverse-Transverse Interaction
In this case, the primary waves will be two distinct transverse waves
with frequencies that satisfy the rescnance conditions. First we will
cansider colinearly propagating, orthogonally polarized waves, The follow-

, . . . . A = + -> -+ - >

ing characterizes this relatlonshlp: Ka- A = 0, KB' AB =0, K.* A =0,
- + - > . (2)
Koo By = 0 and A - Ay = 0. When one examines the S;

in Eqg. (25b) one observes that it is equal to zcro, and we therefore

vector expressed

conclude that no interaction takes place. For colincarly propagating,

non-orthogonally polarized transverse waves, the following characterizes

. . -+ -+ -+ - -+ -
the relationship: K * A =0, K,» Ay =0, K * A =0, KB' A_ = 0 then the

source vector becomes:
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TABLE 1: (T-T) interaction
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TABLE 3: (L-T) interacticn
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(2)

F 2
i(esp) = K|

- 8 i * KT Ky py)

- 1/2( p+ 8/4) (A A){IK E3

- 1/2( X+ p+ A/4 4+ B)(A y A ){K " R LY () — - @1

(B)t i

By examining the table, we can see that there is no frequency limit for
the transverse wave, and that the dircction of radiation is colinear with

the propagation vectors. Now let us investigate the projection vector

g2
k(‘I*B)

(2) Ty oo

" Bi(asgy Ty T

k
Because ;i and ;k are camponents of unit vectors, the above cxpression
is zero. Because of this we conclude that a transverse wave does not
radiate due to rescnant interaction of colinearly propagating transverse
waves. This result is not physical and will be considered again. We can
also canclude that a longitudinal wave will not radiate when the inter-
action takes place in a medium where ¢, > Cp because there is no frequency
ratio that will satisfy the resonance condition,

Noncolinear, orthogonally polarized transverse-transverse
interaction is next investigated. The relationship between the primary

waves 1is characterized by: ﬁm' ?\x = 0, KG‘ KB =0, R -A =0. Then:

8 g
Sy = - W2t AR RO R e R R R )
Pilwig) { i)™ e Tl Bl By (g
+ 23 K )(K : K D By T 2R KRS Kg) Ay gy T

AR R B[Ry R R, s Kp) Ay ) +RR) R oK) A

1 (=)
1 - - - - . - T, >
- e+ B LA R B K Ky o) ¢ Rr KRy B Ky ()]
- - - (28)

For noncolinear propagation, the transverse waves cannot excite a second
order transverse wave and for a material where CL > CI" the {«+8) second
order longitudinal wave cannct exist. Therefore the displacement due to

resonant interaction in this case is the following longitudinal wave.
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If the primary waves had the same frequency, then there would be no

(s

Ué%l_g)(;ft) = Sin[(wa - mB)(t - r/CL)] - = - = (29)

second order displacement, For nonorthogenal polarizations, the above
expression is valid, that is, the (=-f) longitudinal wave will be

(2}

radiated; hawever, the Sk(t:-B) expression will be as expressed in Eg.

. S-S -» . + -
(15) with K.~ A =0, KB AB 0.

b} Longitudinal-Longitudinal interaction.
First the colinear propagation of primary waves will be considered,

ﬁLm vector remains the same as expressed in Eg.

In this case, the S
(19}, with the exception of some of the vector products being easily
written as scalars, Note that this vector is colinear with the propaga-
tion (and polarization) vectors of the primary waves. By examination
of Table 2, one observes that a longitudinal wave will radiate for any

frequency ratio, and that the direction of resonance is colinear with the

direction of propagation. The displacement is:
2 N

N (S yrir, V'
Ui?l+5)(r.t) = L{2B) 1 Tk sin{(wm + mB)(t - r/CL)] - - == {30)
B 811200 Ci r

For a media where CL > CT' there is no possible froquency ratic for
resonance of the («-B. ) transverse wave and the frequency ratio for the
(=+B) transverse wave is ~l. This is not physical so we conclude that
no transverse wave can be generated by colinear longitudinal-longitudinal
wave interaction. For oblique interaction of the primary waves, ane
cbserves that there is no longitudinal wave radiated due to resonant
interaction; however, if the frequency limits of the («+B) transverse

wave are met, the radiated displacement will be:
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This can be shown to be equal to zero for orthogenal propagation by

S -{5

{2)
U (atp)

(r,t) = sin[(ma + 1.-;8) (t-—r/CT)] - == {3

letting cos ¢ = 0 in the rescnance conditions. The vectors I, and
S;Efl +g) are coplaner with the propagation vectors; therefore, the dis-
placement and direction of propagaticon of the («+8) transverse wave will

also be coplaner with this plane of interaction.

¢} Longitudinal-Transverse Interaction

Colinear propagation of the primary wave (3.8' ifB = 0, KB- f(’c = 0,

Km‘ KB = 0) will be considered first. Here the « wave is longitudinal

and the B wave is transverse. In this case the source vector becamnes:

(2) = - .+ +.+ . +..p _)..+
Silaspy =~ V2 (Gt 2R - KD &R Ky ¢ (R Kp) (K- K) ]
FOrus B A R R R
-F.-b > -
O BA KK A | (32)

Upon examination of Table 3, one sees that there is no frequency ratio
that can satisfy the resonance condition for the («+g) longitudinal and
the (=-B) transverse secand order waves. The («-8) longitudinal and the
(«+3) transverse waves have possible frequency ratics, and therefore,
rescnant radiation of these waves are possible. The direction of radia-
tion for each wave is colinear with the axis of the propagation of the

primary waves. The source vector is colinear with the direction of the

pelarization vector Ay (@) " Then
(2 =2 _
i(aeg)fy = O

and we conclude that the anly second order displacement due to longi-

tudinal-transverse interaction is the transverse wave:
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For oblique interaction of the primary waves, the vector has carponents
both coplaner with the plane of the propagation vectors and perpendicular to
this plane. Therefore, the («-8) longitudinal wave will be excited as
well as the (=+8) transverse wave mentioned above, Thus it can be ocon-
cluded that a normal mode transverse wave and a flipped mode longitudinal
wave will be generated when a longitudinal and a transverse wave interact
cbliquely.

Before discussing the J;esults found above, interaction of visco-
elastic plane waves will be considered., Once this is done, the certain

inadequacies of volume interaction will becane evident,
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Cl{APTER V
INTERACTION OF VISCOELASTIC PLANE WAVES

In this chapter, the intcraction of visceelastic waves that are
propagating colinearly will be considered. Also for canvenience these
waves will be assumed to be propagating in the same direction and have
the sane phase at the origin (x = t = o}. Nothing is lost by assuming
these two conditions and the analysis can easily be redone to include
either or both of the excluded conditions. Also it is important to note
that these interaction cases cannot be derived fram the previous volume
interaction cases for reasons that will became evident later. There are
several distinct types of interaction to be considered when studying
the interaction of viscoelastic plane waves. They are:

l. Interaction of transverse and longitudinal waves

2. Interaction of two transverse waves

3. Interaction of two longitudinal waves

4, Self interaction of a transverse wave

5. Self interaction of a longitudinal wave
Let us consider plane waves propagating in the x direction. In this
case u_ is a longitudinal wave displacement field and u_ and u, are two

Y

orthogonally peolarized transverse waves. If ui(r,t) =u y z(x,t) is
r r

substituted into Eq. (I-37), the resultant equations will be:
2 - 2 - 2 =
poatux (z + r-./:%)iitaxux (A + 2u) 3xux

Lo 2
[3(x + 2y) + 27 + 683 + 2C] axuxaxux

2 2 -
+ [{A + 2u) + A/2 + B][axuyaxu + axuzaxuz] (1)

Y
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p 3fu -n3 3%u - dlu =

oty t'Xy Xy
2 - 2 2] 11 | = = e e -
[(A+ 2u) + A/2 + B] {Bxuyaxux + z:ﬁxux axuyl (2}
2 _ 2 _ 2 -
Fjoa‘tu'z r]ataxuz n axuz
2. . 200910 1 = = o -
[{hA+ 2u) + /2 + B) [axuzaxux + axux aqu] {3)

The above three equations could have been written as one equation as
was done in the preceding chapter, however, with the equations wi'itten
in this manner, it is easy to see what primary waves will interact to
form the varicus types of second order waves. Also the scalar Green's
function can be used to solve these equations whereas the tensor valued
Green's function was used to solve the vector equation of the last

chapter,

1} longitudinal and Transverse wave interacticn

In this section, the interaction of a longitudinal and a trans-
verse wave will be considered. The equations to be solved are equations
(1) and (3), where the polarization of the transverse wave was arbitrarily
chosen to le in the z direction. The same equation governs the transverse
wive: polarized along the y axis and by choosing either polarization, the
problem 1s campletely solved as equations 2 and 3 show ¢ orthogonally
polarized transverse waves propagate independently of each other. Investi-
gaticn of the equations will show that perhaps two second order waves will
result when longitudinal and transverse waves interact. They are a trans-
verse wave ad a longitudinal wave; however, the interaction that causes
these waves is distinctly different, The transverse wave is generated
by the interaction of the primary longitudinal and transverse waves.
Later it will be shown that this interaction does not occur. The second

order wave is generated by the sum of the self interaction of the two
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primary waves., That is the transverse primary wave interacts with itself
to form a second order longitudinal wave and the primary longitudinal
wave does the same.

Self interaction of waves will be considered in a later section;
however, the second order displacement field will be calculated here in
a slightly different manner.

As in the last section, the primary waves will be represented by
the real parts of the solution to the linear equations. The linear

equations in this case are the scalar wave equations:

2 (1) 2 (1) - I

Py, Bt u = (% +n/3) ataxux (A + 2u)8xux =90 {4}
2 (1) _ 2,1 _ a2 1) gL .- —m e

Po Bt u, n ataxuz u axuz = 0 (5)

The real part of the solution to these equations are:

wt = (K| costut - K (o)) @@= 0 K] = == == oo o (6)

(1) 2 ' K" X] e mm e e m - o
u o= |AB] cos{wBt - KT(B)X] expl K (6) x] (7)

After substitution of the primary waves into the scurce terms and after
Fourier transformation, the inhomogeneous equations govermning the second

order displacements can be found to be:

2 2y m(2) =g L e L - -
(0, + k) G =8 (8)

2 2y gl _gz@ _ _ _ . ____._
(ax + KT) U, =5, (9)

(2)

where in §x both waves are longitudinal,
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g2y _ _ 30+ 2u) + 2(A + 3B + C)
X

2 A A ('l 3 + 3 Knl K! )
PR T AP ey * 2 Ke) Fuie

l L} 1 13
i—i-[exp[-ZKL(x)x} §w + 2m¢)-—exp[2!{L(a)x] Slw - Zmu)]exp[-ZKL(u)x]

2 K! .
L KL(“) [exp[—sz'(c)x] 6(w+2ma) + expl2 Ki(q}X] G(w—&ua)]exp[-m(i(m)]

(=)
+ y,

A+ 2y + A2+ B

dnp, w?

KiPghy (Kpg) + 3KD () Kpg))

1 1 ] | - N
i:[exP[-ZKr(B)X] 8w + ZwB)—exp[ZKT(B)x] Sw ZwBHexp[ ZKT(B)XI

? K}
(8) {3) ' ) - —ARY
+ 5 [exp[—ZKT(B)x] Slw + ZwB) + exp [2K'T(6)x] S{w ZmB}exp[ ZKT(S)]

For the z equation a longitudinal and a transverse wave that are propagat-
ing colinearly are the camponents of the source term, These two waves

will always have a zero resultant for the source term because A*A 0.

B =
Thus the anly secand order wave generated will be the longitudinal wave,
and this wave will be due to the self interaction of the primary waves.
The solution to the inhamogeneous equation can be found by using the scalar

Green's function:

if exp[ll&'(x - x')] X>X'
e 3
exp[=1K (x - x')] xex!

Ky - - - - (1D

0o -

Then the second order displacement will be given by the real part of the

solution of the inhanogenecus equation
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{
U}(Cz) {x,t}) = RE//exp(—imt) éL(x,x') 5}({2) (x') dwdx' == ===~ {12)
0

-0

where 2 is the interaction length or the distance through which the wave
interacted. This length would in general be the field variable x if the
waves were propagating in a homogeneously nonlinear media and also if

the primary waves were generated at the origin. There is cne interesting
and physical case where the field variable is not equal to the interac-
tion length £ and that is as follows. If the primary waves {or wave)

*

were genexated at the origin with sufficient amplitude (A, ,) and that
t

g
there was nonlinear interaction, either self interaction or mixed inter—
action, a second order wave would be generated up to a point x = £, at
which time the primary wave or waves have been damped to such an extent
that the arqument of second order smallness becames valid and the second
order wave gencrated after the point x = ¢ becames insignificant. In

this case the second order wave would be "radiated” along the axis of
propagation of the primary waves until it also damps to an insignificant
amplitude. The case where the field variable x is equal to % is derivable
fram the results cbtained by the integration of Fq. (13) and will be
discussed further for the cases of self interaction of waves.

The cases involving second order wave propagation in nonlinearly
inhomogeneous media will not be solved here; however, the methods for
solving these problems are similar to those considered and these problems
are at least conceptually no more difficult to solve. TFor instance, if
the madium of propagation was characterized by a strip of nonlinear
material confined between the end points (a,b) the secord order displace-
ment could be solved for by changing the limits of integration of the
variable x' in Eq. (12) to (a,b) and by letting the Lame” parameters X

and u be zero where they appear explicitly in the source term.
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As mentioned before, the second order displacement is due in the
case of longitudinal-transverse interaction anly to the self interaction
of the primary waves. Because self interaction will be considered later,
the result in this case will be written down with anly the following
explanation.

The second order displacement is the real part of the solution
to the inhomogeneous equation. If Equations (10), (11), and (12) are

cambined, the real part of the solution can be found to be:

U>(c2) (x,t) = SSA*+ 2u) + 2(A+ 3B + C) A A
16m p_ (2w )?
o o
Y1
-5 { {cos Ml cos Pl - sin Ml sin Plj exp (Nl) exp {Ql) - oS Ml exp (Nl)}

+ __i {Isin M) cos P + cos M, sin Pl] exp (Nl) exp {0,) - sin(Ml)exp{Nl)}

V3
Va
- -V—g {{ cos M) cos Py - sin M, sin Pl] exp (-Nl)exp(-Q]'__) - cos M exp(Nl)}
VS
. . _ , . _
- ‘E {{sin M, cos Py + cos My sin P;) exp (-N))exp(-Q]) + sin M, exp( Ny 3}

(A + 2u) + A/2 + 13
+ {
lén P4 (2&38)2 ABAB

- i {[cos M, cos P, - sin M, sin P,) exp (N,) exp (Q,) - cos M, exp (Nz)}

+ V-{Isian cos P, + cos M, sin P,] exp (N.) exp (Q,) = sin M, exp (N.)}

le

V—l—; ({cos M, cos P, + sin M, sin P,] exp(-N,)exp(-Q))+cos M, evcp(-Nz}}

Vi1

- G-i-z- {(sin M, cos P, + cos M, sin P_] e:q)(-Nz)exP(fQé) + sin M, exp(-Nzl}}
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¥" and §" are as above with w, replaced by wg -

il

2u t - 2Y’H£(“)x

+26' Ky %

2 (=K (o b

+2 (3L .2

+ 2 (0+l)\L()

Zugt = 2 YK o0

28" Kﬁ(B)X

= ¢ Ry ) Ky )

2 (éKi( FE(B))

= 2 (6K gy *Kppy) %

(1 +9& a2y (14 qwia) Y2 1)

(1 + 4w2A M2 w?A?) )10 1)
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t
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and where:

P = K * 3 Kie) KLim)
Py = Lo Ke)

3

1 " 2 I
3 7 Fpgy * 3 Bpeg) Krep)

—
|

. | 2 "
4 = Kp) Koy

Now the nature of the second order wave can be investigated. The terms
whose argument is M show that the wave oscillates with frequency 2 or
ZwB and propagates with a speed that a viscoelastic wave of this fre-

quency would. Also as the terms with N as the argument shows, the wave

dissipates at a rate indicative of a wave of this frequency. The terms

46
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with P and Q as arguments show the functional dependence of the wave
interaction. It is interesting to note that the wave will increase in
amplitude in an oscillatory manner, then decrease in the same manner.

In this case, the P terms mcxdulate the wave and the Q terms dissipate
the wave. Investigation of the P and Q terms of the contribution for
the transverse wave will show that the amplitude of the second orxder
wave 1s dependent on the difference between the magnitudes of the
propagation (and dissipation) vectors of the longitudinal and transverse
waves., This is a very interesting and physical phenarenon ard will be

discussed in the next section.

2) Interaction of Longitudinal Waves

The interaction of two distinct longitudinal waves will next be
cansidered. As seen in the last section, a second order longitudinal
wave will be formed when these waves interact. The equation to be

solved is;

2 - 2 - 2 -
P oYy, - (T +n/3) 30U, - (A + 20 32U =

2 T o e o e e o m e
(3(h + 2p) + 22+ 3B+ Q)} 'axu}‘_‘axo:‘c (14)

The primary waves can be written in the form:

U}ED= A, coslw t - KL(a)x] exp {"K}_',(c)x]

+ A - =1 = ] o ke e e - e
g COS [wBt hL(B)x] exp { (B)x] (15)
After substitution of the primary waves into the perturbed equation of

motion, and after Forier transformation, the equation to be solved for

the second order displacement can be shown to be:



_30+2u) + 2(A+3B+C)

KL, Auhgt

7
i+ ™
w

411,30 w?

G (o[- ) * K )XI(w + (,2u,))

- exp["(KT:(“) s %{B})X]G(W(mutwa))]

I

8 ¥ . .
loxpl=(Kp oy * K (py)x]6 {0 + {uw twp))

- @{p[—{Ki(u:) * KI'..(B))x]G(m-(matuB))] :

Bt A AEITE

where:
— T 2 ' " 2 t »1 " "
F's = K@) KLgy * ¥Lia) ¥Ligy * 2 Xy Koy Foi

_ 1 F 1 " 2 ] 1 1] m
o = KLip) *L() * KLip) K * 2 Ko Koo ¥Lip)

r
!

Pg = 2 Koy ¥L(o) ¥Lipy) ¥ 2 KLy XLip) ML)

1 2 " " 2 ™ - 1 2 n " z
77X K@ P e e T %e e T e Key

-~ (17}

As before the second order displacement is found by using the Green's

function expressed in Eq. (11). Then:

{

(x t) = RE//exp(-mt) G {(x,x") S( }{x Yawdx' = - - -

48
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By performing the indicated operations, the second order displacement
will be found to be:

(2}

(x,8) = 5 3(A + 2y) + 2(A+ 3B + Q)
a+f lﬁ‘ﬂpo (wmims}z

A

- %E—{[cosM?' cosP —SJ.nM3 SlnP] exp(N ) exp(Q -coijexp(N )}
ﬁlS 3

A

14 .
+ == i — a4
‘515 {[s:.nM3 coesP3 + cosM3 s:mP3] exp (NB) exp(QB} s:..nM3 exp(NBJ}

16
EEE {[cof'l*‘l3 cosP, - sin My sinP.) exp(- Ny) exp(-0}) - cosM, exp(-N,) )

!_\
Zx_ {[s:mM3 COSPy + cosM, sinP,] exp(-N,) exp(-03) - sinM, exp (-N3) }}

where:

813 = W (asg) Kiqaegy ~ Bl Kup))? * K arp) KL fsp)™ K o) ¥ gy ] FgtTg)

"KL (spy KL (map) * KL o) KL () ) KL wsp) B ey K, oy Kigy) ] (T52Tg)

= [Kn

107 Wi (eeep) MLwen) L) ML) ) L erm) KL (ay ™ K, ) Ky () 1) ) (T5¥Tg)

"KL (e BL (arp) ™ L) L) ) Y (op) B geeapy K o) K () )1 (92T

D=
!

1 - ] + ¥ 2 3 " 1" 2
15 = Bp(erg) ~— Kppey T K@)t ¥ I gy + (K] o #K] (0)))
B16 = KL erp) &L (arg) ™ L (o) KL () ) 1KY (e ) (K erp) =0 (o) KL ()0 ] (T52Tg)

UKL (o) OL (e8) ~ L (o) L)) KL () K gy ™ K () 2K, () 1)} (T30 )
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= K] ey B sy ™ L o) B0 (8) R o2) K () ~ K gy HL gy )1 3 (T92Tg)

= t —f1et + ! 2 rn —i{u" " 2
B1g = B (aep) "KL (o) L))t K ferp) T () Y () ]

and where:

=z
]

3 = lugtught = Ky g%

37 K (wp) ¥

o
I

37 R (ergy = W) * ¥pp )2
Q3 = K (asp) ~ Kl (a) + Kpep)) 12
Q3 = [ (arp) ¥ Koy * KL (g’ 12

Thus we see that two second order longitudinal waves are generated when
two primary longitudinal waves interact. The second order waves have
the frequencies of (w_ + mB) and (w, - wB) . Because of the frequency

dependence of dispersion and dissipation, the wave of frequency (w_ = w,)

B
is generally regarded as the important product of this type of interaction,
These two second order waves, when added to the primary waves will tend to
alter the shape of the primary waves. Under saoe conditions, the shape of

the total displacement field approaches that of a shock wave.

3) Interaction of Two Transverse Waves
Previously it was shown that when two primary longitudinal waves

interact, a second order longitudinal wave will be generated. In this
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paragraph, it will be shown that a similar longitudinal wave will be
generated when two transverse waves interact.
The equations to be solved are:

82U ()-(; +nﬁ)aa=‘” - O+ 2 aum’

2 (1) o1 4 g2y ()
(G+ 20 + /2 + BIBIU, 73,0, + 250 . U] = - - - (20)
and
2 (1 _ g g
PPt Uy,z =M U, " w0 =0 e oo (21)

The primary waves ocould be written in the form:

(l) - 1 i
Uy o Ort) = By e Bg) cos (ut - Ky %) exp (KE %)

*Bygyr Baqpy! 08 (Wgt - Kpgy¥) exp Ky %) - - (22)

and substituted into the source term of the inhamogenecus equation;

however, it is easier and more instructive to write the source term of

I, {20} as:
22(1) o)
[+ 20) + A/2 + B] 3. Up U (23)
where U( ) is the primary transverse displacement:

T

a1y > 1 n .
Up = A(c) cos [w, t I&r(a)x]e:q:[—}ﬁﬂa):\] + A( cos[w t= I(,T(B)x]exp[ KT

After the source term of Eq. (21) is replaced by L. (23) and the primary
displacement substituted into it, the Fourier transform of the eguation

to be solved will take the form:

02+ k) T 00 =8P - oo oo oo oo (25)
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(Tg * Typ) q{ SR~ Ky () * Kpp)) 1810 + (o tug)]

- e.xp[HK.i.(u) K.i.(B))x]G(w-(wain))]Exp[—(l(.;(aﬁl(.'f(s)}x

+ (T

B~

11 Tip) 5 (lexp Ky gy 2 Kpgg)1X¥]8 [ + (u twg) ]

where:
— ] 2 1 " 2 1 ] " Il
o = Kr(w) Koy * Br(ey Kripy * Zres) Frep) ¥roiw)

_ 1 2 1 n 2 1 [ o u
T10 = %r@) X1y * Brp) Kr(e) * K Koy Kpep)

r

1 2 " " 2 " - ] 2 " " 2 u
11 7 Kpee) Bree * Koy ¥re) ~ Ko Koy * Frge) Kpey)
P12 = 2 Kp) Ko Kreey + gy Krig) Kpee

The second orxder wave will be given by:

(2
x X

o )
(x,8) = RE //exp(~imt) G, 6e,x') 517 () axaw - - - - - (20)
-0 0

After performing the indicated operations the displacoment ise

U{z)(x,t)= r A+ 204+ A2+ B K'?\
X ) « O

atff  16m pm(u_:m:wB

{
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- 619 {Ic:osM4 cosP4-sm M4 sinP ] exp(N ) exp (Q4)-—cosM4 exp(N y}

21

20
t i {[smM4 cosP, + cosM, sinp,] expN) exp (Q,) -sinM, expl,, }

21

A

22 : : , '
- 50a {{cosM, cosp, - sinM, sinP,] exp(-N,) exp(-Q)) - cosM, exp(-N,)}

- ‘3_2_3_ Hsmid cc.tsP4 + COSM4 sinP ] exp(-—N ) exp{—Qq) - s:'_nM‘1 exp (-Nq)}

24

where:

b14 (w tw Jt KL(“*B)X

Ng = Kp (aep)®
1% Bpasgy 7 Bpoy * Kpgy) 12
Ly T Bpie * Kyt

Qp = UK (espgy * Wp(ay * Kpepy] 2

J
i

o]
Ny
§
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4) Self Interaction of Viscoelastic Transverse Waves

Self interaction of a transverse wave will be considered next.
The result of a transverse-transverse wave interaction is the generation
of a longitudinal second crder wave. Also, the secand order wave will he
a normal mode wave with the flipped mcde wave being zero in the case of
self i.nte'raction. Unlike the previous analysis, the interaction length
will be specified as the entire length of the field variable x. That is

the second order displacement will be given by:

The equation to be solved for the primary wave is:

2.,(1) _ (1) 2 (l)
DoatUz naaU uax 2

The real part of the solution of this equation is:

(l) - ] - MW wr] o o = oww i m we m em
(x,t} ABcos(w t - KT(B)X) exp( KT(B)x) (29)

Here the polarization was arbitrarily chosen to be in the z direction.
The inhomogeneous equation whose solution will yield the second order

displacement. is:
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2 (2) 2 (2) -
- { ¢+ n/3) Btaxux - (A + 20) axe =

(+ 2w + a2+ 8 208 o oL (30)

After the primary wave is substituted into the inhamogeneous equation
and after Fourier transformaticn, the equation takes the familiar form:
25(2) 2m {(2)
IV tRU T =S
where the effective source term is given by:

=_(>\+2U)+A/2+B

4n Py w?

r2
AqAB I\L{

r3 P 1 -1
Vin [e@{-ZlKT(B)x]G(ur+2wBJ-exp[ZKT(B)x]G(w—ZwB)]exp[-ZI\T(B)x]

r
+ 2 loxp [=26K7, 0y X] S lwrt2ug) + @Xp 2K, o) x]6 (w2 ) Jexp (-2, 5 %] )

where:

— 1 3 " ]
T3 =2 Kppgy * 3 Kpgy Kppgy)

- 2 "
Ty = 4 Kpiay Xreg

By using Eq. (27} and the Green's function expressed in Eq. (11), the
real part of the solution and hence the second order displacement can be

found to be:

+ A+ 2u+ A2+ B
2
l(S'er0 (ZwB)

U}Ez) {x,t}) =

Py
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- = (32)
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Investigation of Iq. (33) seems to indicate that the second order

longitudinal wave is due to a sum of two waves of frequencies 2w One

8
of these waves propagates with the speed of a transverse wave and the
other propagates with the speed of a longitudinal wave. This is an
incorrect interpretation and is due to the fact that the second order
displacement is written in the most compact manner and not in a form
which is instructive.

The expression fram which Eq. (33) was extracted is:

U.(2J (L + 2 +0/2+B AA

k0 = o™ |
167 (2wB)’
by5tid,e .
[L~exp[2i (Y™K (5) = Kp(g))¥] expl-2(8"K} (o) + Ki(5,)%1)
bogtidyg .
+ —7%-6'-— {exp[-Zl(wBt -y KL(B)X)] exp{-28 KL(B)XJ

[l—exp[-2i(Y"K£,(8) - K.‘I.(B))x] e:q)[Z(é"Ki‘.(B) + K,'I',(B)x]} }
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This expression, although it is not the second order displacement (its
real part is) shows the nature of transverse wave self interaction.
In each term there is an expression for a second order langi-

tudinal wave with a coefficient which is of the form:

[L-exp (20 (Y"K] () = KpygyX] expl-2(6"K] o\ + Ko )x]

This is in effect a modulation function and it is due to the interaction
nature of the wave. The harmonic term can be thought of as a longitudinal
wave propagating away from a transverse wave. This is exactly the case

of self interaction of a transverse wave.

5)  Self Interaction of Longitudinal Waves

Fram the results of longitudinal-longitudinal interaction, we can
conclude that a second order longitudinal wave will be produced when a
primary longitudinal wave self interacts. The equation to be solved

for the second order displacement is:

(2)

2,,(2) _ 2
n_3cy {% + n/3) at ax Ux

- 2
REFON O+ 2p) 32ug2) _

[3(A + 21) + 2(A + 3B + O)] aiuil’ axuil} —————— (35)

arnd the primary wave is:

Uil}(x:t) = Acoslut - Kp oy %] P (X)) == == = mm - - - (36)

Substitution of Eq. (36) into Eq. (35) and Fourier Transformation

results in:
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Where the effective source term is given by:
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By using Bq. (27} and the Green's function expressed in Eqg. (11}, the

solution to the inhomogenecus equation can be found to be:

3(A + 2u) + 2(A + 3B +0)
2
1én bo (2u)
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x o
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The real part of the above yields the displacement:

U}({z} (,0) = JAF 20 F 2R IBHCO) g

lem p (2w )
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The significance of this result will now be discussed.
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CHAPFTER VI

SUMMARY AND DISCUSSION

Two types of interaction of waves in a solid have been considered:
volume interaction of viscoelastic waves and interaction of viscoelastic
plane waves. Volume interaction of viscoelastic waves was investigated
only to the extent of calculating the far field displacement, Further—
more, only the purely elastic wave was considered when resonant interaction

was studied. The results are sumnarized below.

1} Transverse-transverse wave interaction.

a) Colinearly propagating, orthogonally polarized transverse
waves not to interact.

b) Colinearly propagating, non-orthogonally polarized waves
will not interact rescnantly.

c) Obliquely propagating, orthogonally polarized transverse
waves interact resonantly to form a flipped{=-B) mode
lorgitudinal wave,

d) A flipped mode longitudinal wave is also produced when
obliquely propagating, nanorthogonally polarized waves

interact.

2) Longitudinal-longitudinal interactions.
a} Colinearly propagating longitudinal waves will interact
to form both a nommal mode {=+#) and a flipped (=-8) mode
longitudinal wave.
b} Non-colinearly propagating longitudinal waves will interact
to form a normal mode transverse wave. The polarization
and directiocn of propagation of this wave is coplaner with

the propagation plane of the primary waves.
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c) Orthogonally propagating longitudinal waves do not

interact,

3} Longitudinal-~Transverse wave interaction.
a) Colinearly propagating longitudinal and transverse
waves interact to form a normal mode transverse wave.
h)  Obliquely propagating longitudinal and transverse waves
produce a flipped mode longitudinal wave and a normal
mde transverse wave when they interact resonantly.
1t must be pointed out that these waves are not the only waves
present in a physical interaction situation. 7The above mentioned
generated waves are due to "strong" or resonant interaction and they
are the waves that are radiated away from the primary deformations. The
far-field approximation of the Green's function was used to calculate
these second order waves. Had the entire Green's function as expressed
in Eq. (IV-22) been used rather than this approximation, the resulting
second order displacement would include all of the nonlinear waves. For
instance, in the resocnant interaction of colinearly propagating transverse
and longitudinal waves, the flipped mode longitudinal wave was found to
be zero by using the far-field Green's function; however, this wave will
have a nonzero value if the entire Green's function was used, Also by
using the entire Green's function, it can be seen that both the normal
and flipped mode transverse waves will be gencrated when two transverse
primary waves propagate colinearly,
Fram the above statements cne might conclude that the analysis
should be done by using the entire Green's function rather than the
approximation. This conclusion would be valid if it were not for the

following points.
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The volume of interaction nust be spherical for the Green's
function in question to be valid, and the wave radiated must be a radial
wave, If one is to calculate the near field effect of interaction by
using the entire Green's function, then the interaction volume must be
specified rore precisely and the appropriateness of the Green's function
reestablished. One need only consider the interaction of colinearly
propagating waves to see the point,

One very physical way of handling the interaction of colinearly
propagating waves is by the methads of interaction of plane waves.

By using these methods, we found that either a normal or flipped mcde
longitudinal wave was formed when any of the following interactions tock
place:

Longitudinal - Longitudinal

Transverse - Transverse

Longitudinal - Transverse

Transverse self interaction

Longitudinal self interaction
The resultant nonlinear wave due to Longitudinal-Transverse interaction
was actually a sum of two longitudinal waves that were caused by self
interaction of the primary waves. Therefore we conclude that colinearly
propagating longitudinal and transverse waves do not interact with each
other,

The form that the second order longitudinal wave takes when two
longitudinal waves interact is given by Eqg. (19). Here we see that both
normal and flipped mode waves are generated. We can also see that no

interaction will occur when

[KI'.(azB) - (KI:(:-:) * KX:(B)}”' = Nnu N=12,3. ..
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and that the second order wave is maximized when:

' — {1 . ®Y _ Nm =
K aeg) ~ Bl t K1t = N=012,...

In spite of the term (mmiwﬁ)z in the denominator, the flipped mode wave
due to primary waves of nearly the same frequency will not have an
amplitude of infinity. In fact the entire contribution of the coefficients
will tend to make a flipped mode wave of low frequency have an amplitude
of zero. Also the normal mcde wave with high frequency will not be
unstable because of the familiar effects of dissipation. One then con-
cludes that there is an ideal frequency for the second arder wave that
maximizes its amplitude. This wave of ideal frequency can either be a
normal or flipped mode wave; however, the mode with nonideal frequency
will probably be much smaller than the ideal wave. Such a wave would
then correspond to the wave due to resonant interaction of the volume
interaction cases. No attempt was made to find this "ideal" frequency
because it is believed that considerable numerical analysis will be
necessary to find this frequency analytically.

A similar second order longitudinal wave will be generated when
two transverse waves interact. In this case, the conditions of no

interaction are:

(K] aapy = Wppey * Kp(aylt = 17 N=0,1,2,...
and the conditions for maximum interaction are:
! - ! + ' = I:]I- =
{KL(“i'B) (K',[‘(cc) = KT(Q}”E =3 N=0,1,2,...

The same frequency deperdence of the amplitude of the wave in the longi-
tudinal interaction is present here. This strong frequency dependence
seems to indicate that the second order wave is highly dispersive, That

is, a spectra of nonlinear waves may tend to filter itself to the "ideal"
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frequency as it propagates. A spectra of nonlinear waves may be
generated by a similar spectra of linear waves or by higher order inter-
action of the primary and nonlinear waves. This filtering effect of
nonlincar waves may be responsible for the characteristic shape that
nonlincar waves which propagate long distances have (24).

The magnitude that the second order wave will have is very much
dependent on the interaction length. This can be seen by not writing
the displacement but rather writing the solution to the inhomogeneous
ecuation. -

For Longitudinal-Longitudinal interaction this is:

3(A+ 2u) + 2(A+ 3B + ()

U;(zj(xrt) = I 2 AuAB{
=1 16w po(ugiwg)
A, L+1A
137 °"14 ; & exp (K
v exp i ((w twgdt = K (4 gy %)) K (s ™)

el U] ) = (R oy 2 K] 0010)] @@= (K] oy = (KE4KE )2y )

Bygtibyy . ,
+ ——~EIE—— exP["l((maimg)t'KL(atg]X)] exP["KL(«tB)x] .

U=exp =3 R] (s 0y~ UK, (o) 2 Ky () ) 2V V@R IR, eay + O, () ¥, () 1)

and for Transverse-Transverse interaction, a similar term exists,

A Agl

Uty = p0o B2 A/22+ £
<t 161 Po (waiwﬁ)

explillu fug)t = Kf (o\0)X) ] XDl o y0yx]

(L-exp (LUK, (o ypy = (K 0y By )2 @D [= (K] )0y = (KT, (o) K 5y ) ) 2]
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522+ia23 ) . "
&24__ exp[lt(wmiwﬁ)t - KL(«iﬁ)x” eXP[—KL(mtB)x]

(L0 (=5 (K], )= iy HKop ) )T 2 BT () = (KR, o #K )V 2]
-------- (2)

Both equatians are very similar, each term consisting of a hammonic expres-
sicn that represents the second order wave multiplied by an expression
that represents the interaction of the waves. One can see that the
amplitude of the second order wave will be dependent on the interaction
lengtn £, and that there will be definite values for £ that will maximize
or minimize the magnitude of the second order wave.

If the primary waves interact for the distance up to or beyond
the field variable, then the above equations are modified by letting
£ = x, In this case the coefficients of the second order waves become
modulation functions and it can be seen that the amplitude of the second
order wave will fluctuate along the x axis. Also the amplitude will grow

or decay in this fluctuating manner depending on the values of K and

(e)
Sle

A sccond order longitudinal wave is formed when either a longi-
Ltulinal or a transverse wave interacts with itself, In the cases of
self interaction, the interaction length was assumed to be the entire
length of propagation of the primary wave., Again the nonlinear wave will
Ibe modulated in time and space, and hence there is a specific length for
the field variable that will maximize or minimize the second order
effects of the wave in a specific region.

With all of the types of interaction having been investigated,
an interesting phencmenon can be observed. Because a second order trans-
verse wave is not generated when a transverse primary wave self-interacts,
the fonn of the primary transverse wave will be independent of nonlinear

effects, whereas the second order langitudinal wave produced when a
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primary longitudinal wave self interacts will add to the primary wave
and alter its form. Wwhy anharmonic effects alter the form of a
longitudinal wave and not that of a transverse wave can be explained as
follows.

The speed of any point on the profile of a longitudinal wave
is given by:

v = EL + atﬁ(t)

The change in the waveform of the wave is due to the particle velocity
v beiny different for the various points on the wave form. This can be
caused by two mechanisms.

1) CL is dependent on the campressed or extended state of the
media and therefore it varies over the range of the period of the waveform.

2) The particle velocity coincides in direction to CL (and v}
for a lengitudinal wave and decreases or increases v accordingly.

This is not the case with a transverse wave though. First
corpressions and extensions do not occur when a transverse wave propagates
and secondly the particle velocity is perpendicular to the propagation
velocity for transverse waves. Therefore the particle velocity will
remain constant at all points on the profile for a transverse wave and
the wave will retain its form, The longitudinal wave will distort due
to the change in particle velocity on the profile as we have found in
the analysis. This distortion (due to anharmonic effects) is often
referred to as intermodulation distortion,

A final note on how the nonlinear elastic constants can be found
is now in order. We have found that there are two types of interactions
that occur when the primary waves are propagating colinearly. They are

transverse~transverse and longitudinal-longitudinal interactions and they
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both result in a longitudinal secand order wave. Although there are

three nonlinear canstants they only appear as two algebraic cembinations.

A+ 33+

and A/4 + B

The first appears in the coefficient of the second order wave when
longitudinal waves interact and the second appears in that when transverse
waves interact. This interaction can be either distinct or self. Thus
these cambinations of constants can be found by investigating, say, the
self interaction of longitudinal and transverse waves., In this case
eqations IV-35 and IV-38 would give the nonlinear coefficients if the
linear parameters (A,u,i,n), frequency of the wave, distance of propagation,
amplitude of the primary wave, and amplitude of the second order wave
were xnown. The linear (isothermal) parameters can also be determined

by a wave propagation experiment; however, inclusion of that experiment
in this discussion is not appropriate. A convenient way of determining
the amplitudes of the waves is described below and the necessary apparatus
is shown on Plate 1.

The apparatus has provisions for monitoring the input spectra and
output spectra of waves of two polarizations, longitudinal and one trans-
verse direction. Fram the output spectra, both the amplitude of the
secand order wave and that of the linear wave can be abtained., This is
accomplished by knowing the coupling coefficients of the crystals and the
setting on the amplifier. In order to perform the necessary calculations,
the primary wave amplitude must be known. If the output amplitude is

known, then the input anplitnde can be found by using the following:

Aout = Ain exp(~K"%) ,
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The frequency of the oscillator is precisely cdetermined by the
frequency counter and the input spectra is monitored to be sure that the
primary wave is monochramatic, The photographs on Plate II show the
input and output spectra for a 5 g mzlengitudinal wave propagating through
a path length of 20 an of an acrylic resin plastic. The input spectra
shows cnly a 5 K HzPrimary wave and the output spectra shows the primary
wave and the nonlinear wave., This will be the type of data needed to
cbtain the nanlinear constant cambinations.

In oonclusion, we mast state that in addition to being interest-
ing, nonlinear viscoelastic waves can be significant and that this
annarmonic phenomenon deserves more theoretical, numerical and empirical

study.



Figure (la) Figure (1lb)

VAN

Figure (2a) Figure (2b)

Input (Figs.(la) and(2a)) and output (Figs.(lb) and(2b)) spectra for a
5K Hz wave propagating in acrylic resin plastic,

Plate 11
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MPPENDIX A
GREEN'S FUNCTION FOR VOLUME INTERACIION

The Fourier Transformed inhamogeneous equation is:

Lu® 8@ =- 2 8@ - (A1)
P oGt

where:

fik('r’} = QPKZ6, - (-KL/K1DD -~ - - - - (A2)
This has the solution:

=(2) > _ 1 s(2) > F(-1) = _

Uk {r} = "O""-'-z-'— Si (r) Ilk (r) (AB)

T

However, if a Green's function is defined as a tensor of rank two such that:

L&) G @,r) = - Yt ()
D()
then:
Sy EE = - - s, 362 £LV @) - - - s
o°T
fram which it can be seen that:
TAGNES =f1 Gy 5" §§2’ (T} a’r® - - - - - (A6)
v

and the problem reduces to one of finding the Green's function that

satisfies lg. (Ad). For simplicity, the term (- l/ C2 )} will be ignored

o T
for the present, then, Ig. (A4) beccmes:

2 2 _ - 2 - T > e
[(a+ Kp) 35y = (1= KI/KD) 3,5, ] Gy (X,E') =6, d(r-1") (A7)
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The spatial Fourier transform pair is:

Yy = JE() exp( i¥r ’r c - - m e e e — - - (A8)
J
and:
E(r) = 1/2m° J §y) exp(-iy"Ra%i = - = = = = - - (9)
Y

If the divergence of Eq. (A7) is taken and the resulting equation Fourier

transformed in space coordinates, the result will be:

2 2 _ 2 2 o2 - — - -
(5 + K vy 6+ @ KK viviY ] ij ) = 8574 (A10)
if
o Gy BN = 0

Eq. (AlQ) can be written as:

c 2o w2 2 . e v e e e -
(hT KT/KLYi ) Y ij (v) Yj (All)
fram which we conclude:
2
- Y.

Yka (v) =—ELr _—J - (Al2)

] Ko 2_ w2

it K

Pearrangement of Eq, (Al0) will result in:

2 2 = o - - ¥2 2 2 B
O+ Xp7) vy Gy O = 855y = = K/KDY vy Gyty) (AL3)

Substitution of BEg. (Al2) into the above and multiplication of the

equation by _l/Y;-K; will result in:

., -G, . z K? YY.

Glj (Y) = _'2'__1'2'2““‘ + (if‘ = l) (—f) 2 21 J_‘ P (Al‘q')
or

= =6, . 2 Yy

Gij ) = —z——']"l"; + (1 - i) N SRR (n14b)



Furthermore
2 2 .2
Kh -
- 2 .

Kp Of - KD (&p - KD K - K by = KD

and

K2 . g2 2y ~(y? 2
T B PSSl

i - K)o K 0§ - K

= N =&, . Y Y
GlJ(Y) - _;_dll; e 2k [ 2 : 2 2 - z} ________ (h15a)
i TRy K vi-XK vi-¥
or:
o - Y.Y - Y. Y-
I e R TR (AL5b)
b -k ook
This can be inverse Fourier transformed in y space to yield:
~ 9.0. L ‘
Gy GE) = -l + 2y 2 z/g eplir. (0] gy,
K2 (2m) Y- K
%% 1 (-iy® (F=r")]
+ / eplziy’ 1T (@y,)? - ===~ - (A16)
G e0ly T d-q

In spherical vy space, the integral

L f exp(-iy* R) @y.)?
(2m) oyl =

2
i~ K
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becanes:

/dlb/df)/ dYegp[-:.yR cosf]) smey _______ (AL7)

(2“) ' - R ,T

The tesserial part can be integrated by use of real variable techniques.

2n m

/ d;ﬁ/ dé exp[-iyR cosf8] sing ds

o o
b

= 27 / —l—- exp{-iyR cosB] iyR sinf ds
o ¥R

= 4n exp(iyR) - exp(-iyR) _ 4y Sin{YR)

YR 2i : YR

The integral (Al7) becawes:

a3

. 2
12 / sm;‘gR) - A > L O e T T {A18)
¢ Yo y° - KL,T )

The integrand is an even function, therefore the above is one half the

integral from - to @, Then the integral beoowmes:

1 exp(iﬂ'ﬁL exp (-iy | R])
- YAY - e e m = e - m - - (A19)
1872 R 7 o ﬁf”*%T

The above is to be integrated by using Cauchy's thecrem and therefore
the contour must be chosen so that a physical Green's function results.
Because we are interested in finding the waves that radiate away from
the interaction volume, the terms in the Green's function mist be of

the type exp (iK|R|). The first term in Eq. (Al9) is integrated by using

the contour shown in the sketch,
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Im

K, T T

—KL,T-J'KE.,T

and the result is:
iw ] R )
exp(lKL’T] |
The centour for the second term is shown below and the result is:

-im exp(iKL'T|§|)

Im

L, 7,
L

K

"KJ:..,T—j'K{.,T

Y
S

Cambining the results yields:
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e K IR
4R

or

xp(i K JE-E'])

41 |¥-r']

Thus the resulting Green's function is:

o 3.9, expli |;—'f'|]
E..(E,2Y) = (6., - 22 o

1 Bk R

39, ?t?[i K JE-r ]
K,i, an| P17}

+

The above can be expanded to yield

- N ~A ~ A 2i ~ A 2 e){p[iKTI-f—;'I]
e N I P A= PR & R e |72 |
|r—r'|KT |c-r! Ko dn|r-c'

aA~ KB .2, n A expliK, |7-2'|]
+[r.r. EQ-— r ‘__JgiE__ -r.r 2 ] lKL

i j_r‘ -+ > j_j++ -+ > - - ~(A2])
) K% ) |r-x' K3, {r-r"| K; 4m|r-x'|

In order to obtain a far field approximation of the Green's function,

all quantities involving r will be expanded.

1 L
|T-r'| = [(z=r') * (Z-¥"]% = (£ -F=-2r - ' +2' *1']"
r - T ool ~
=r(l-2——+ (/D% =r(l-xr ' +---~-)
Similarly:
- + - ” —l> = %4. l_ re ;' -------
|r-r' | r'r x?
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If we consider cnly the lowest terms in the expansions, the far field
Green's function will be given by:
1 s

G. . ""’*| . T errrrre—— 5 -r.r. ' _A-+l W _A.+|
15 (r,r jm) 4npOC,I,2r( i3 rlrj)exp[J.KT(r rer'}yl expl KT(r r*r')

1 e RV C H A.+I i
+ —_— r.r:.| e>q3[1KL(r-r-r)] exp [-K[ (r-r-r') ] (A22)

4~n‘pocLzr .

where the Green's function of Eq. (A2l) was multiplied by and the real

and imaginary parts of the wave numbers were explicitly written as:

KLEKJI_."'iKi: --------------------------- {A23)
KT=K'i‘+i R R A et {A24)
where:

w 2(1 + 8 %w?) .k
K\ = 2| ' ]
T Cro (145 2u?) %1

=2 2y}
K":E‘=Cm [(l+3w) ]]%

To  2(1+5%w?)

20+ A%f)]!:
- 1
Lo  (1+A2w?) %41

KL=¢

T (l+1—\2m2)11-l 3
Kl =& [ ]
Lo 2{1+&%w?)
. . rt n/3
L T
B = n/u
G = W)

c = OBt

These expressions are derived in Appendix C.
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APPENDIX B
GREEN'S FUNCTION FOR PLANE WAVE INTERACTION
The equation to be solved is:
2w 0P =8 e e c e e (BL)
This equation has the solution:
5@ g = pD g B — e (82)
However if a Green's function is defined in such a way that

L (x) G (x,x") =8(x=%X') = = = === — == - - (B3)

Qr

Gx,x") =8 TRG(KK') mmmmmmmm e = m = (B4)

then it can be seen that

5(2) (%) =_/ GX,X")S(X')AX' = = = @ = = = = {(B5)

xl

In this case the linear operator is:

Lix) = 3'x + K, ¢ Tt --e--- (B6)

where Koo is complex.

The spatial Fourier transform pair is:

v

T 4 =/ T (x) exp(iyx) dx - = - = == == =~ = = =~ - - (87)
_ * v _

f (x) = l/21r/ f{y) expl-iyx} dy - - === == == - - - (B8)

Y
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Transformation of Eq. (B3) results in:
by
(-y% + Ki ) GlY) = expliyx’) = = - - ==~ ooww-- (B9)

Multiplication of Eq. (B9) by -1, (-Y2+I{2L o and applying inverse

transformation results in:

Glx,x') = 1/2n j expl-iy(x=x3) .. _ (510)
Y

(YK, ) (V4K o

This will be integrated by using Cauchy's residue theorem and the contours

shown below.

oK), KL K g

R’
- ) —

“KL',,T"j‘KE,T K ,T_iKE,T '

x>x! x<x!

The rosult is:

A

expli KL T(x—x )] expl- & T(x—x )] xox!
T

Gx,x'} =
7 expl-1 K (x=x'}] cexpl- {(x-x')] =x<x’
KLT KLzt KL,
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APPENDIX C

DERIVATION OF THE QOMPLEX PROPAGATION VECTORS

The equation to be solved is:

2 _ 2 - a2 - - - _ _
poa tUi at[na Ui ¥ {z 2/3n)aiakuk] ue Wi * (A+u)aiakuk si (Cl)
The Fourier Transformation Pair is:
flw) = 1/211/ f(t) explint)dt = = =« = = = = = =« - - - (C2)
£ () =_}/ f(w expl~iwt)dn - -~ - - == ==u-- (C3)

If f(t) is zero at t = +o and ~» , then the above equation can be

transformed to:
- 253 . 2T - B oi_,a2 oo 7 =8 - _ _
P, W Ui + iwlng kUi + (z 2/3n)ainUk] 1a kUi ()\+u)3iakUk Si (C4)

Rearrangements yields:

2"' - -- - -. - - = C oo oo -
P Ui (u 1“’“151jkekmaiazum+ A+2u) =iw( g n/B)IBinUk 5; {C5)

After taking the curl of the above equation the following results:

2 F IR T _ 1 C e e o - -
% + K} U oy = o = e T o) (C6)

and after taking the divergence of the equation:

2 2y = - -1 =S
(@ + &) Uiy = 575 Sitm n

where:

33Us opy = O



and

and

3 0

¢ 3x%5%w) =

2
)
p()

2
Ky, = [O+210) ~ 1wl +n/3)]

2
Y
r)C)

2 _
I(T_u-:u:m

The remainder of the analysis will be devoted to finding the real and

87

imaginary parts of K and Kp.  Eq. (C8) and (C9) can be arranged to yield:

Then:

where

and

2
Ki _ 2o (+iad)
ML)
o _w? =
K'z - 9 A+3ieB)
I | T
{1+w*B“)
A= L3 L
L+ 24 ! u
o
K = W (MH+ihV:
. — 1
L Cp (w?ad) s
=1
P 6 T
- L
' Cro (1Bt
2u. b
= (%
CLO po
]
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The bracketed term in the numerator of each expression for k can be

represented by:

2 =R exp(if)
where:
exp(if) = cosB + i sind
and where
% = (1 + wzaz)li
R, = {1+ u.tzﬁz)li
and
o, = —
G = tan” 3
also
exp(i—g) = | .1_.5_9039]’5 +i [}_;_359]%
cos 0, = /(1 + (WR)Y)*
o8 O = /(L + wB)™
Thus: 1
} e 1 &
- 1
2 W 1 2p2¢% {(L4w?R?) , (1+w2§_’);;
K =& . (L +?A)" | — 2 o+ 5 }
L (+e?ad)?
and

L 1 L
1+ 1 -
Kp=  — . (el | T v 3 BT
Cr (+a?a?)2

Fram which we conclude:

R =KLHLG ad Ky= Ky k)



wherae:

% 1

K =80 (1+0,2R2) %4 1 uw (L+u?R2) %1 :
[ = & s ] K = { - ]
2 (12 A2) S 2(1+w?A?)
- k! k
.Y (1+uznz>"f+1] L w o, GtBy'ig

¥ . Il__ {
S “ro 2 (142 B?) r o 2 (1+w? B?)






